Automatic Keypoint Detection on 3D Faces Using a Dictionary of Local Shapes

Clement Creusot, Nick Pears, Jim Austin

Advanced Computer Architecture group
Department of Computer science
THE UNIVERSITY OF YORK

3DIMPVT, Hangzhou, China, May 2011
Aim

- Keypoints detection (NOT LANDMARKS)
- Similar to any of 14 learnt features
 (Dictionary of local shapes)
Part of a bigger project

Long Term Objective
Gap in Research
How
Results
Conclusion

Landmarking

Positions + Labels

Landmarking
Part of a bigger project

What
Why
Long Term Objective
Gap in Research
How
Results
Conclusion

Keypoint Detection
Labeling

Part of a bigger project

Landmarking
Positions + Labels
Keypoint Detection
Labeling
Most literature:

- 3 points max or single-point-of-failure design
- Weak features often discarded
- Almost no work on combining more than 2 descriptors
- Little literature that examine multiple descriptors over multiple scales
- Most people focused on landmarking, without giving the intermediate results on candidate detection (keypoints)
Workflow

- What
- Why
- How
- Results
- Conclusion

OFFLINE

Train Meshes → Descriptor Maps

Clement Creusot 3DIMPVT, Hangzhou, China, May 2011
Workflow

OFFLINE

Statistical Distributions

Landmarks

Train
Meshes

Descriptor Maps

What
Why
How
Results
Conclusion
Workflow

OFFLINE

Statistical Distributions

Landmarks

Train Meshes

Descriptor Maps

Score Maps

What
Why
How
Results
Conclusion
Workflow

OFFLINE

Statistical Distributions

Descriptor Weights

Landmarks

Train Meshes

Descriptor Maps

Score Maps

LDA

Statistical
Distributions

Descriptor
Weights
Workflow

ONLINE

Dictionary of local shapes

Test Meshes → Descriptor Maps → Score Maps

Statistical Distributions

Descriptor Weights

Dictionary of local shapes

What
Why
How
Results
Conclusion
Workflow

ONLINE

Dictionary of local shapes

Test Meshes → Descriptor Maps → Score Maps → Mixed Maps

Statistical Distributions
Descriptor Weights

Clement Creusot

3DIMPVT, Hangzhou, China, May 2011, 5/8
Workflow

- Statistical Distributions
- Descriptor Weights

Dictionary of local shapes

Test Meshes → Descriptor Maps → Score Maps → Mixed Maps → Final Map → Keypoints
Results

- Sparse selection (max 1%)
- Reapeatable (same subject registration)
 - $\sim 75\%$ (at 10 mm)
- Close to human hand-placed landmarks
 - average All: $\sim 85\%$ (at 10 mm)
 - average Nose: $\sim 99\%$ (at 10 mm)
 - average Eyes: $\sim 90\%$ (at 10 mm)
- High proportion of the local shapes retrieved
 - $\sim 11.88/14$ (at 10 mm)
Conclusion

○ Good points:
 ○ Detects "weak" features
 ○ No single-point-of-failure design

○ Limitations:
 ○ Can be time consuming
 article: 7s, now: 0.5s (8 desc.)
 ○ Linear combination of scores

○ Future Work:
 ○ Non linear methods (boosting, kernel methods)
 ○ Structural matching to deduce correspondences
 ○ Comparison with a new clustering technique for keypoint detection
Conclusion

Good points:
- Detects "weak" features
- No single-point-of-failure design

Limitations:
- Can be time consuming
 article: 7s, now: 0.5s (8 desc.)
- Linear combination of scores

Future Work:
- Non linear methods (boosting, kernel methods)
- Structural matching to deduce correspondences
- Comparison with a new clustering technique for keypoint detection

Thank You For Listening!

http://www.cs.york.ac.uk/~creusot