Reading Assignments:

Read Chapter 1 of Chen

Paper and Pencil Assignments:

Please do the following problems at the end of chapter 1:
1) Problem 1.3: Consider the signal $x_1(t)$ shown in the following figure. Plot $x_1(t-1)$, $x_1(t+2)$, $x_1(t-1)+x_1(t+2)$, $x_1(t-1)-x_1(t+2)$, and $x_1(t-1)x_1(t+2)$.

2) Problem 1.6: Express the signals in the following figures in terms of step and ramp functions.

(a)

(b)

(c)

(d)
3) Problem 1.7: Consider the signal in the following figure. It starts from \(t=0 \) and ends at \(t=2 \) and is said to have time duration 2.
 a. Plot \(x(2t) \). What is its time duration?
 b. Plot \(x(0.5t) \). What is its time duration?
 c. Show that if \(a > 1 \), then the time duration of \(x(at) \) is smaller than that of \(x(t) \). This speeds up the signal and is called time compression.
 d. Show that if \(0 < a < 1 \), then the time duration of \(x(at) \) is larger than that of \(x(t) \). This slows down the signal and is called time expansion.

![Graph of x(t)](image)

4) Problem 1.9: Consider a signal \(x(t) \). Define
 \[
 x_e(t) = \frac{x(t) + x(-t)}{2} \quad \text{and} \quad x_o(t) = \frac{x(t) - x(-t)}{2}
 \]
 Show that \(x_e(t) \) is even and \(x_o(t) \) is odd. Note: a signal \(x(t) \) is even if \(x(t) = x(-t) \) and is odd if \(x(t) = -x(-t) \).

5) Problem 1.13: Sketch the signal in Figure a in Problem 2 modulated by \(\cos 2\pi t \).

6) Problem 1.14: Compute
 a. \[\int_{0}^{\delta} [\cos \pi \tau] \delta(\tau - 3) d\tau \]
 b. \[\int_{\delta}^{\delta} [\cos \pi \tau] \delta(\tau - 3) d\tau \]
 c. \[\int_{-\infty}^{\infty} [\cos(t - \tau)] \delta(\tau + 3) d\tau \]
 d. \[\int_{0}^{\infty} [\cos(t - \tau)] \delta(\tau + 3) d\tau \]
 e. \[\int_{-\infty}^{0} [\cos(t - \tau)] \delta(\tau + 3) d\tau \]

7) Problem 1.20: Show
 \[
 x[n] \delta[n - n_0] = x[n_0] \delta[n - n_0]
 \]
 where \(n_0 \) is a fixed integer, and
 \[
 \sum_{n=-\infty}^{\infty} x[n] \delta[n - n_0] = x[n_0]
 \]
 They are the DT counterparts of the sifting property.

8) Problem 1.22: Consider the CT signal
 \[
 x(t) = 2 + \sin 1.4t - 4 \cos 2.4t
 \]
 Is it periodic? If yes, find its fundamental period. (a) Express it using exclusively sine functions. What are their frequencies, corresponding magnitudes, and phases? (b) Express it using exclusively cosine functions. What are their frequencies, corresponding magnitudes, and phases?

9) Problem 1.31: Consider \(\cos \omega t \) with \(T = 1 \) and
\[
\omega_r = \frac{2\pi k}{N}
\]

where \(N\) is a given positive integer and \(k\) is an integer ranging from \(-\infty\) to \(\infty\). How many different \(\cos\omega_r n\) are there? What are their frequencies?

10) Problem 1.34: Consider the CT signal \(x(t) = \sin 50t + 2\sin 70t\). Verify that its sampled sequence \(x(nT)\) is \(-\sin(50nT)\) if \(T\) is selected as \(T = \pi/60\). Can you determine the two frequencies of \(x(t)\) from \(x(nT)\)? What is the sampled sequence of \(x(t)\) if \(T = \pi/45\)? Can you determine the two frequencies of \(x(t)\) from this sampled sequence? Repeat the question for \(T = \pi/180\).