EE422G Homework #14 (12 points)
Due April 27, 2007
Please pick up your graded homework after 4/30 (Mon) outside FPAT 687.

1. (2 points) Linear Algebra
 a. Find the determinant of \(A = \begin{pmatrix} -1 & 0 & 0 \\ 1 & 3 & 0 \\ 0 & 1 & -4 \end{pmatrix} \)
 b. Find the inverse of \(A \)

2. (5 points) Identify the state matrices A, B, C, D AND the transfer function \(H(s) \) for the following set of equations
 \[
 \begin{align*}
 \dot{x}_1 &= -4x_1 + 3x_2 + 6u \\
 \dot{x}_2 &= -x_1 - 7x_2 - 4u \\
y &= 5x_1 - 3x_2 + 2u
 \end{align*}
 \]

3. (2 points) Obtain a state model for the followings:
 a. \(H(s) = \frac{s + 1}{s^2 + s + 3} \)

4. (3 points) Given the following circuit
 a. Define an appropriate state vector for the above circuit.
 b. Write the output equation in the form of \(y = Cx + Dw \).
 c. Write the dynamics equation in the form of \(\dot{x} = Ax + Bw \). Hint: Use KVL on the two loops indicated in the drawing.