EE422G Homework #3 (12 points)
Due February 1, 2007

1. (2 points)
 a. Prove the Integration Theorem

 b. Find the integral-differential equation that corresponds to the following equation in s domain.

 \[s^2 Y(s) + 2sY(s) = s^3 X(s) + \frac{X(s)}{s} - e^{-s/s}\]

2. (2 points) Solve for x(t) and y(t) which are governed by the following system of differential equations:

 \[
 \frac{dx(t)}{dt} + 3x(t) + 2y(t) = u(t) \\
 \frac{dy(t)}{dt} - x(t) = 0
 \]

 Boundary conditions: \(x(0) = y(0) = 0\)

3. (2 points) Obtain the Laplace transform of the triangular signal \(x(t) = \Lambda(t-1)\) by using the differentiation theorem, the time-delay theorem, and expressing \(\frac{dx}{dt}\) in terms of unit steps.

4. (4 points) Find the initial and final values, if exists, of the signals with Laplace transforms given below:

 a. \[
 s^3 + s^2 + 9s + 9
 \]

 b. \[
 s^2 + 5s + 7 \\
 s^2 + 3s + 2
 \]

5. (4 points) Obtain the inverse Laplace transform of

 a. \[
 X(s) = \frac{7s^2 + 15s + 10}{(s+1)^2(s+3)}
 \]

 b. \[
 X(s) = \frac{s^4 + 8s^2 + s + 17}{(s^2 + 4)^2(s+1)}
 \]
6. (4 points) Given \(Y_1(s) = \frac{s^3 + 6s^2 + 11s + 6}{(s^2 + 4)^2} \) and \(Y_2(s) = \frac{s^3 + 6s^2 + 11s + 6}{s^2 + 4s + 4} \)

a. Use MATLAB to find \(x(t) = y_1(t) \ast y_2(t) \)
b. Use MATLAB’s residue function to find the partial fraction expansions for \(Y_1(s) \) and \(Y_2(s) \)