8.2B Digital-to-Analog Conversion

D/A = Passing $x_s(t)$ through an analog low-pass filter. Mathematically:

$$\hat{x}(t) = \int_{-\infty}^{\infty} x_s(\tau) h(t-\tau) d\tau$$

$$\hat{X}(s) = X_s(s) H(s) \quad \Leftrightarrow \quad \hat{x}(t) = \int_{-\infty}^{\infty} x(nT) \delta(\tau-nT) h(t-\tau) d\tau$$

The estimate $\hat{x}(t)$ at time t is based on a linear combination of all samples $x(nT)$.

Two factors:
1. How accurate can the continuous-time signal be reconstructed?
2. How complex is it to realize?

We will look at four methods briefly
1. Ideal low-pass
2. Sample-and-Hold
3. Linear Interpolation
4. General low-pass filter (e.g. RC filter)

<table>
<thead>
<tr>
<th>Ideal Low-pass</th>
<th>RC-filter</th>
<th>Linear Interpolation</th>
<th>Sample-and-Hold</th>
</tr>
</thead>
<tbody>
<tr>
<td>Most accurate</td>
<td></td>
<td></td>
<td>Least accurate</td>
</tr>
<tr>
<td>Sample-and-Hold</td>
<td>Linear Interpolation</td>
<td>RC-filter</td>
<td>......</td>
</tr>
<tr>
<td>Simplest</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. Ideal Low-Pass filter

Idea: In frequency domain, multiply by a brick wall filter

$$H(j\omega) = \begin{cases} T & |\omega| < 0.5\omega_s \\ 0 & \text{Otherwise} \end{cases}$$

is the same as convolving with a sinc filter in the time domain

$$h(t) = \frac{\sin(\omega_s t/2)}{(\omega_s t/2)} = \sin(\frac{\omega_s}{2\pi} t) = \sin(\frac{\omega_s}{2\pi} t)$$
Interpretation in time-domain:

\[\hat{x}(t) = \sum_{n=-\infty}^{\infty} x(nT) \frac{\sin(\pi(t-nT)/T)}{\pi(t-nT)/T} \]

Diagram on right shows the contributions from each term (only four terms are shown)

Notice:
1. At integral number of T (i.e. (n-1)T, nT), only one term has non-zero contribution.
2. For all other t, \(\hat{x}(t) \) has contributions from all other samples.

Why is it impossible to implement “real-time” sinc filter?

It goes from \(-\infty\) to \(+\infty\), which means we need to know \(x(nT) \) from \(-\infty\) to \(+\infty\). Not possible unless the signal is finite duration and stored.

\[y_1(t) = x[(n-1)T] \frac{\sin(\pi(t-(n-1)T)/T)}{\pi(t-(n-1)T)/T} \]
\[y_2(t) = x[(n-2)T] \frac{\sin(\pi(t-(n-2)T)/T)}{\pi(t-(n-2)T)/T} \]
\[y_3(t) = x[nT] \frac{\sin(\pi(t-nT)/T)}{\pi(t-nT)/T} \]

2. Sample-and-Hold

Idea:

It is easy to see that the interpolation filter must look like:
As the frequency spectrum of the sample-and-hold is a sinc function, many high frequency components remains after interpolation. Though very simple to implement, this is not a very effect interpolation filter.

3. Linear Interpolation

Idea:

The interpolation filter looks like:

It is a better filter than sample-and-hold as less high-frequency components can pass through. There is still some low-frequency distortion.
Time-domain interpolation: let’s say \(t = (n-1)T + k \) with \(0 < k < T \)

Contribution from \(x((n-1)T) = x((n-1)T) \frac{T-k}{T} \) (Red part)

Contribution from \(x(nT) = x(nT) \frac{k}{T} \) (Blue part)

and there are no contribution from any other samples. Thus

\[
x((n-1)T + k) = x((n-1)T) \frac{T-k}{T} + x(nT) \frac{k}{T}
\]

- a linear combination of the closest two samples, weighted based on how close they are to the point of interpolation.

4. General filter

In practice, we can design a better filter using proper analog filter design.

To ensure that the high frequency components are removed, the pass-band frequency \(\omega_p \) must be smaller than half of the Nyquist rate or \(\frac{1}{2} \omega_s \).

The text (page 382) lists the first order Butterworth filter but you can use anyone, depending on the desired fidelity and complexity.
Quantization represents a continuous real number (ex. 123.30352562…) using the discrete level, among \(2^n\) (ex. n=5) different levels, closest to the input (ex. 123.50).

Unlike sampling, quantization almost always induces loss in precision. If the input value is very large, we may not care about a loss in the 10\(^{th}\) decimal place.

To quantify this “relative” loss, we use the Signal-to-(quantization)-Noise Ratio (SNR) defined as follows:

\[
\text{SNR} = 10 \log_{10} \left(\frac{\text{Average signal power}}{\text{Average power of quantization error}} \right) \text{ in dB}
\]

Obviously, a large SNR indicates high fidelity.

Quantization Error, \(e = 123.30352562 - 123.50 = -0.19647438\)

This error must be between \(-\Delta/2\) and \(\Delta/2\), where \(\Delta\) is the interval between successive levels (ex. \(\Delta=0.5\)). \(\Delta\) depends on two parameters:

1. Number of levels, i.e. \(2^n\)
2. The dynamic range (max – min) of the input signal. Let’s denote as \(D\).

Then,

\[
\Delta = \frac{D}{2^n} = D2^{-n}
\]

Assume the quantization error \(e\) is uniformly distributed between \(-\Delta/2\) and \(\Delta/2\).

Average power of quantization error

\[
\mathbb{E}[e^2] = \int_{-\Delta/2}^{\Delta/2} e^2 \frac{1}{\Delta} \, de = \frac{\Delta^2}{12} = \frac{D^2 2^{-2n}}{12}
\]
If the signal power is P_s, then

$$SNR = 10 \log \left(\frac{P_s}{D^2 2^{-2n/12}} \right)$$

$$= 10 \log 12 + 10 \log P_s - 20 \log D + 20n \log 2$$

Thus, SNR can be improved by

- raising the signal power, P_s
- reducing the signal dynamic range, D
- increase the number of bits, n

"6-dB rule": it’s convenient to remember that every additional bit will improve the SNR by $20 \log 2 = 6$ dB