Calculating DFT

\[
X(k) = \sum_{n=0}^{N-1} x(n)e^{-j2\pi nk/N} = \sum_{n=0}^{N-1} x(n)W_N^{nk}
\]

Denote \(W_N = e^{-j2\pi/N} \), then \(X(k) = \sum_{n=0}^{N-1} x(n)W_N^{nk} \)

- Each \(X(k) \) requires \(N \) complex multiplications and \(N \) complex additions.
- Each complex multiplication needs 4 real multiplications and 2 real addition because \((a+jb) \cdot (c+jd) = (ac-bd)+j(bc+ad)\)
- There are \(N \) different \(X(k) \), so we need a total of
 \[4N^2\] real multiplications
 \[4N^2\] real additions

However, by taking advantages of some properties of \(W_N^m \), we can significantly speed out the calculations \(\Rightarrow \) Fast Fourier Transform

Interesting Properties of \(W_N^m \):

1. \(W_N^0 = (e^{-j2\pi/N})^0 = e^0 = 1, \quad W_N^N = e^{-j2\pi} = 1 \)
2. \(W_N^{N+m} = W_N^m \) (periodic)
3. Assume \(N \) is a multiple of 4
 - \(W_N^{N/2} = e^{-j2\pi/(N/2)N} = e^{-j\pi} = -1 \)
 - \(W_N^{N/4} = e^{-j2\pi/(N/4)N} = e^{-j\pi/2} = -j \)
 - \(W_N^{3N/4} = e^{-j2\pi/(3N/4)N} = e^{-j3\pi/2} = j \)
4. Assume \(N \) is even
 - \(W_N^{2kr} = (e^{-j2\pi/N})^{2kr} = (e^{-j2\pi/(N/2)})^{kr} = W_N^{kr} \)

\[
W_N = e^{-j\frac{2\pi}{N}}
\]

One slice of pizza
Example 10-3: Two-Point DFT

\[x(0), x(1): \quad X(k) = \sum_{n=0}^{1} x(n)W_2^{nk} \quad k = 0, 1 \]

\[X(0) = \sum_{n=0}^{1} x(n)W_2^{n0} = \sum_{n=0}^{1} x(n) = x(0) + x(1) \]

\[X(1) = \sum_{n=0}^{1} x(n)W_2^{n1} = \sum_{n=0}^{1} x(n)W_2^{n} \]

\[= x(0)W_2^{0} + x(1)W_2^{1} = x(0) + x(1)(-1) = x(0) - x(1) \]

Example 10-4: Four-point DFT of \(x(0), x(1), x(2), x(3)\)

\[X(k) = \sum_{n=0}^{3} x(n)W_4^{nk} \quad k = 0, 1, 2, 3 \]

\[X(0) = \sum_{n=0}^{3} x(n)W_4^{n0} = \sum_{n=0}^{3} x(n) = x(0) + x(1) + x(2) + x(3) \]

\[X(1) = \sum_{n=0}^{3} x(n)W_4^{n1} = x(0)W_4^{0} + x(1)W_4^{1} + x(2)W_4^{2} + x(3)W_4^{3} \]

\[= x(0) - jx(1) - x(2) + jx(3) = (x(0) - x(1)) + j(x(3) - x(2)) \]

\[X(2) = \sum_{n=0}^{3} x(n)W_4^{n2} = x(0)W_4^{0} + x(1)W_4^{2} + x(2)W_4^{4} + x(3)W_4^{6} \]

\[= x(0) + x(1)(-1) + x(2)(1) + x(3)W_4^{2} = x(0) - x(1) + x(2) - x(3) \]

\[W_4^{0} = e^{-j\frac{2\pi}{4}} = 1 \]

\[W_4^{1} = e^{-j\frac{2\pi}{4}} = -j \]
\[X(3) = \sum_{n=0}^{3} x(n)W_4^{3n} = x(0)W_4^0 + x(1)W_4^3 + x(2)W_4^6 + x(3)W_4^9 \]
\[= x(0) + x(1)W_4^3 + x(2)(1)W_4^2 + x(3)W_4^1 \]
\[= x(0) + jx(1) + (-1)x(2) + (-j)x(3) \]
\[= x(0) + jx(1) - x(2) - jx(3) \]

\[X(0) = [x(0) + x(2)] + [x(1) + x(3)] \]
\[X(1) = [x(0) - x(2)] + (-j)[x(1) - x(3)] \]
\[X(2) = [x(0) + x(2)] - [x(1) + x(3)] \]
\[X(3) = [x(0) - x(2)] + j[x(1) - x(3)] \]

If we denote \(z(0) = x(0), z(1) = x(2) \) \(\Rightarrow \)
\[Z(0) = z(0) + z(1) = x(0) + x(2) \]
\[Z(1) = z(0) - z(1) = x(0) - x(2) \]
\[v(0) = x(1), v(1) = x(3) \] \(\Rightarrow \)
\[V(0) = v(0) + v(1) = x(1) + x(3) \]
\[V(1) = v(0) - v(1) = x(1) - x(3) \]

Our four-point DFT:
\[X(0) = Z(0) + V(0) \]
\[X(1) = Z(1) + (-j)V(1) \]
\[X(2) = Z(0) - V(0) \]
\[X(3) = Z(1) + jV(1) \]

\[\text{Two-point DFTs} \]
\[x(0) \quad \rightarrow \quad x(1) \]
\[x(2) \quad \rightarrow \quad x(3) \]
\[\text{Two-point DFT output} \]
\[x(0)+x(2) \quad \rightarrow \quad x(1)+x(3) \]
\[(Z(0)) \quad \rightarrow \quad (V(0)) \]
\[(Z(1)) \quad \rightarrow \quad (V(1)) \]
\[\text{Four-point DFT output} \]
\[X(0) \quad \rightarrow \quad X(1) \]
\[X(2) \quad \rightarrow \quad X(3) \]
\[1 \quad \rightarrow \quad 1 \]
\[(-1) \quad \rightarrow \quad (-1) \]
\[\frac{1}{4}N \quad \rightarrow \quad \frac{1}{4}N \]

Key point: We compute 4-point DFT based on two 2-point DFTs
Decimation-in-Time FFT Algorithm

\[x(0), x(1), \ldots, x(N-1) \]

\[N = 2^m = 2^{10} : \text{1024 Samples} \]

Separate into even and odd samples:

\[g(r) = x(2r) \quad \Rightarrow \quad g(0) = x(0), g(2) = x(2), g(4) = x(4), \ldots, g(1022) = x(1022) \]

\[h(r) = x(2r+1) \quad \Rightarrow \quad h(1) = x(1), h(3) = x(3), h(5) = x(5), \ldots, h(1023) = x(1023) \]

\[X(k) = \sum_{n=0}^{N-1} x(n)W_N^{kn} \]

\[= \sum_{r=0}^{N/2-1} g(r)W_N^{2kr} + \sum_{r=0}^{N/2-1} h(r)W_N^{k(2r+1)} \quad (k = 0, 1, \ldots, N-1) \]

\[= \sum_{r=0}^{N/2-1} g(r)W_N^{2kr} + W_N^k \sum_{r=0}^{N/2-1} h(r)W_N^{2kr} \]

Using property 4:

\[W_N^{2kr} = (e^{-j2\pi/N})^{2kr} = (e^{-j2\pi(N/2)})^{kr} = W_N^{kr/N} \]

\[\Rightarrow X(k) = \sum_{r=0}^{N/2-1} g(r)W_{N/2}^{kr} + W_N^k \sum_{r=0}^{N/2-1} h(r)W_{N/2}^{kr} \]

\[= G(k) + W_N^k H(k) \quad \text{even} \quad \text{odd} \]

where \(G(k)\) and \(H(k)\) are the \(N/2\) point DFT of \(g(r)\) and \(h(r)\) respectively.

\[X(k) = G(k) + W_N^k H(k) \quad k = 0, 1, \ldots, N-1 \]

\[G(k) = \sum_{r=0}^{N/2-1} g(r)W_{N/2}^{kr} = \sum_{r=0}^{N/2-1} x(2r)W_{N/2}^{kr} \]

\[H(k) = \sum_{r=0}^{N/2-1} h(r)W_{N/2}^{kr} = \sum_{r=0}^{N/2-1} x(2r+1)W_{N/2}^{kr} \]

Question: \(X(k)\) needs \(G(k), H(k), k=0\ldots N-1\)

How do we obtain \(G(k), H(k)\), for \(k > N/2-1\)?

\[G(k) = G(N/2+k) \quad k \leq N/2-1 \]

\[H(k) = H(N/2+k) \quad k \leq N/2-1 \]
Such recursion can be carried on by considering the even and odd samples of the sequence at each stage. For a 8-point FFT, the resulting decomposition looks like:

What is the big deal?
(1) Very regular structure ⇒ easy hardware (and software) implementation
(2) Big complexity savings!!

Why? Let’s say you want to compute 1024-point DFT.

Using direct computation, we need $4N^2 \sim 4$ million operations

Using the above strategy:

Let $C(N) =$ total operations for 1024-pt DFT

\[
C(1024) = 2\times1024 + 2\times C(512) : \text{One stage butterfly + Two 512-DFT}
= 2\times1024 + 2\times[2\times512+2\times C(256)]
= 4\times1024 + 4\times[2\times256+2\times C(128)]
= 6\times1024 + 8\times[2\times128+2\times C(64)]
= 8\times1024 + 16\times[2\times64+2\times C(32)]
= 10\times1024 + 32\times[2\times32+2\times C(16)]
= 12\times1024 + 64\times[2\times16+2\times C(8)]
= 14\times1024 + 128\times[2\times8+2\times C(4)]
= 16\times1024 + 256\times C(2)
= 16\times1024 + 256\times 4 = 17408 \text{ operations} \sim \text{A factor of 100 savings!}
\]

In general, $C(N) \sim N(\log_2 N)$. The great savings come from the reduction of a factor N to $(\log_2 N)$, thanks to the recursion