Review from last time:

\[X \perp Y \mid S_1 \cup S_2 \]
\[\uparrow \quad \uparrow \]
\[A \quad B \]

\[X \perp Y \mid S \]
\[\uparrow \quad \uparrow \]
\[A \quad B \]

Back to the V-shape example:

Is \(X \perp Z \mid W \)? YES!!

Is \(X \perp Z \mid W \)? NO!!

\(P(W, X, Y, Z) = P(Y \mid X, Z, W) \cdot P(X) \cdot P(Z) \cdot P(W) \)

\(P(W, X, Z) = \sum_Y P(Y \mid X, Z, W) \cdot P(X) \cdot P(Z) \cdot P(W) \)

\(\Rightarrow X \perp Z \perp W \)
General, how can we determine if $X \notin Y \mid X_E$?

Answer: Bayes Ball (Shachter '98) "Rational Passtime"

Goal: Given a DAG, a set evidence nodes X_E, a particular node X_0
Find all the nodes $\forall X_0 \mid X_E$.

Data Structures:
- Adjacency $(i,j) = 1$ if $X_i \rightarrow X_j$
- Traversed $(i,j) = 1$ if some pt in the edge
- Visited $(i) = 1$ if a ball has visited X_i

Ball in a Bag (a dynamic data structure)
- Ball from $= i$
- Ball to $= j$

Step 1:
Create balls for all j such that $\text{adjacency}(0,j) = 1$ or $\text{adjacency}(j,0) = 1$ and put them in the bag.

Set $\text{traversed}(0,1) = 1$, $\text{visited}(1) = 1$
$\text{traversed}(0,2) = 1$, $\text{visited}(2) = 1$

Step 2:
Select the next ball from the bag and follow the rules below.
Let say ball from $= i$, ball to $= j$. We have 4 cases:
Rule a) $X_j \in X_E$ and $X_i \rightarrow X_j \iff \text{adjacency}(i,j) = 1$

For all k, if adjacency $(k, j) = 1$ and traversed $(j,k) = 0$

then 1) add ball to beg with ball from j, to k

2) traversed $(j,k) = 1$, visited $(k) = 1$

This logic also implies $X_i \rightarrow X_j$ where X_j is a leaf.

b) $X_j \in X_E$ and $X_i \rightarrow X_j$

No Bounce Back because

If adjacency $(j,k) = 1$ and traversed $(j,k) = 0$

then add ball...

It also takes care of the leaf node.

c) $X_j \in X_E$ and $X_i \leftarrow X_j$

Boundary case "X_j is the\' leaf node"
d) $X_j \not\perp X_E$ and $X_{ji} \leftarrow X_j$

Step 3: Terminate when there are no balls in the bag

Step 4: Return all the nodes that have not been visited

Ex.

At the end, X_4 is NOT conditional independent with any other node given X_1 and X_6

Ex. Given X_{ji} in a DAG, what is the smallest set of nodes to condition on so that X_i will be conditionally independent from the rest of the graph given this set?

X_{wi} “parents”

X_c_i “children”

X_{si} “spouses” (nodes that share same children with X_i)