Multimedia Information Systems

Samson Cheung

EE 639, Fall 2004
Lecture 19: Data structure for Similarity Search
What is similarity search?

- Finding the record(s) in a large dataset closest to a given query

- Applications:
 - Content-based retrieval
 - Data-mining and Pattern recognition
 - Geographic information system (GIS)
 - where is the closest post office?

- Our focus is on efficient data structure (indexing) and the associated signal processing algorithms
 - Easy insertion and deletion
 - Fast query time
Query Types

- **ε-search**: the distance tolerance is specified, used at the earlier stage and can be very “loose”.

- **K-nearest-neighbor-queries**: The user specifies the number of close matches to the given query point.

- **Range queries**: An interval is given for each dimension of the feature space and all the records which fall inside this hypercube are retrieved.
Binary search for 1-D feature

<table>
<thead>
<tr>
<th>12.3</th>
<th>45</th>
<th>-3</th>
<th>5.333</th>
<th>6</th>
<th>100</th>
<th>9.4</th>
<th>10</th>
<th>3.4</th>
<th>72.56</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Sort

<table>
<thead>
<tr>
<th>-3</th>
<th>3.4</th>
<th>5.333</th>
<th>6</th>
<th>9.4</th>
<th>10</th>
<th>12.3</th>
<th>45</th>
<th>72.56</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Search

23.4

<table>
<thead>
<tr>
<th>-3</th>
<th>3.4</th>
<th>5.333</th>
<th>6</th>
<th>9.4</th>
<th>10</th>
<th>12.3</th>
<th>45</th>
<th>72.56</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

O(log N)
- Much better than sequential search!!
What about 2-D?
Better rasterization – space filling curve

- Space-filling curve
 - Still have problems at corners
 - Get worse for higher-dimension (more corners)
Multidimensional Index Structures

- Partitioning in the higher dimensional space
- Some common structures:
 - k-d Trees
 - Point quad-tree
 - MX quad-tree
 - R Trees, R*, TV, SS
 - and many others
k-d Trees

- k-d tree is a multidimensional binary search tree.
- Each node consists of a “record” and two pointers. The pointers are either null or point to another node.
- Nodes have levels and each level of the tree discriminates for one attribute.
- The partitioning of the space with respect to various attributes alternates between the various attributes of the n-dimensional search space.
K-d tree example

Input Sequence
A = (65, 50)
B = (60, 70)
C = (70, 60)
D = (75, 25)
E = (50, 90)
F = (90, 65)
G = (10, 30)
H = (80, 85)
I = (95, 75)
k-d Tree: Search Algorithm

- **Notations:**

 \[M = \text{Low}(L) \]

 \[L \rightarrow (..., K_A(L), ...) \]

 Disc(L) : The discriminator at L’s level

 \[K_A(L) \] : The A-attribute value of L

 \[\text{Low}(L) \] : The left child of L

 \[\text{High}(L) \] : The right child of L

- **Algorithm:** Search for \(P(K_1, ..., K_n) \)

 \[Q := \text{Root}; \quad /* Q will be used to navigate the tree */\]

 While NOT DONE DO the following:

 if \(K_i(P) = K_i(Q) \) for \(i = 1, ..., n \) then we have located the node and we are DONE

 Otherwise if \(A = \text{Disc}(Q) \) and \(K_A(P) < K_A(Q) \)

 then \(Q := \text{Low}(Q) \)

 else \(Q := \text{High}(Q) \)
Point-Quad Trees

- Why limit to binary partition?

- Each node of a k-dimensional quad tree partitions the object space into k quadrants.

- The partitioning is performed along all search dimensions and is data dependent, like k-d trees.
Example:

To find/insert P(55, 75):

- Since $X_A < X_P$ and $Y_A < Y_P \Rightarrow$ go to NE (i.e., B).
- Since $X_B > X_P$ and $Y_B > Y_P \Rightarrow$ go to SW, which in this case is null.
MX-quadtree

- Both k-d tree and point-quad tree may divide the space unevenly due to the uneven distribution of the data points.

- MX-quadtree, are similar to point quadtree tree except that they divide the embedding space.

- Each split evenly divides a region.
Example: Construction of a MX-quad tree

Insert A(65,50):
X<=50 X>50 A(65, 50)

Insert B(60, 70):
X<=50 X>50 Y<=50 Y>50 A(65,50) B(60, 70)

Insert C(70,60):
X<=50 X>50 Y<=50 Y>50 A(65,50) B(60, 70) C(70, 60)

Insert D(75,25):
X<=50 X>50 X>75 Y<=75 Y>75 B(60,70) C(70, 60) D(75,25) A(65,50)
R-tree

- All previous structures are not suitable for disk access because of the random access of each data object
- Disk typically organize blocks of data called pages – much more efficient to load one page at a time
- R-tree (similar to B-tree in 1-D)
 - Main memory : store summary of data
 - Data are stored at leaf nodes.
 - Each leaf node contain multiple data objects
R-tree continued

- Root and intermediate nodes correspond to the smallest rectangle that encloses its child nodes
- Each node must be at least half full – minimize the height of the tree
- Leaf nodes contain pointers to the actual objects
- A rectangle may be spatially contained in several nodes (e.g., J), yet it can be associated with only one node.
 - Need to search multiple branches!!
Low-dimensional case

- R-tree
 - Keep Number of Bounding Boxes small (Storage)
 - Each BB should have roughly the same number of points.

NN search
High-dimensional cases

Assume \([0,1]^d\); \(N\) uniform dist. data pts; \(M\) BBs.

- For fixed \(N\), \(E(\text{nn-dist}) = O(\sqrt{d})\)
 - Length of main diagonal of \([0,1]^d = \sqrt{d}\).
- If BB is a \(d\)-cube(s), \(V = s^d\).
 - \(d = 100, s = 0.5, V = 8e-31 \Rightarrow M \equiv N\)
- To keep \(M\) small, lower individual BB to dim \(d' = O(\log_2 N/M) \Rightarrow V(d'-\text{cube}(0.5)) = M/N\)
 - \(l_{\text{max}} = \text{max. distance from BB} = 0.5 \sqrt{\log_2 (N / M)}\)
- \(d > \log N, \ l_{\text{max}} < E(\text{nn-dist}) \Rightarrow \text{Sequential search!!}\)
Curse of dimensionality

Similarity search on high-dimensional vectors is hard!

- Average distance between closest neighbors increases with dimension
- Number of bounding regions grows exponentially with dimension
- Volume of each region shrinks exponentially with dimension

Typical indexing techniques reduce to sequential search for 10 or higher dimensions. [Weber, Schek, Blott98]
Dimension reduction for fast search

Goal: Need to find mapping T and metric $d'(\cdot, \cdot)$ that can preserve distance relationship

Drawback: May not be able to find all similar objects (approximate similarity search)