Multimedia Information Systems

Samson Cheung

EE 639, Fall 2004
Lecture 2: Course Overview
Digital Video Library

Analog Video Archive

- Meta-Data
- Segmentation
 - Feature Extraction
 - Indexing
- Content Protection
- Compression
 - Summarization

Index DB

Similarity Search

Relevance Feedback

Index DB

Delivery

Summarization

Meta-Data

Feature Extraction

Indexing

Video DB

Delivery

Indexing

Similarity Search

Relevance Feedback
Content Protection

■ Problems:
 ■ Forgery detection
 ■ Authentication
 ■ Tracking
 ■ Secure distribution (scrambling)

■ Cover:
 ■ Basic DRM concept and infrastructure
 ■ Digital Watermarking
Watermarking and Content Protection

- Stenography vs. watermarking
- Watermark
 - Visible vs. invisible
 - Spatial vs. frequency domain
 - Fragile vs. robust vs. semi-fragile
- Applications: copyright, user ID, content ID, authentication, data hiding
Compression & Delivery

- **Problems:**
 - Large Data Size: Digital video 720x480x24x30 → 249 Mbps, 112 GB per hour
 - Variation in capabilities in receivers: cell phone, PDA, PC, TV, HDTV
 - Variation in network: mobile, Wi-Fi, Internet, Satellite

- **Cover:**
 - Review image, video, audio, and graphics compression
 - Survey scalable compression, joint source-channel coding, multiple description, distributed compression
Segmentation

Problem:
- Break down complex audio-visual objects into “atomic” units for retrieval

Cover:
- Basic image segmentation
- Video segmentation – shot and story level
- Special “events” detection
 - Face
 - Object Tracking
 - Video Structure Modeling
Feature Extraction

- **Problems:**
 - Represent an audio-visual object as a (multiple) vector with a (multiple) distance function $d(.,.)$ for measuring similarity

- **Example:**
 - **Vector:** Color histogram
 - **Distance:** L-1, KL Divergence, Earth-mover

- **Cover:**
 - Simple features for image, video, audio, 3-D objects
 - Various similarity functions
Similarity Search & Indexing

- **Similarity Search**: Given a query vector \(q \), find \(v \) in a database \(D \) of feature vectors such that \(d(q,v) \) is the smallest (most similar).

- **Problem:**
 - \(D \) could be very large
 - Sequential is slow. Logarithmic search is very desirable!
 - The dimension of \(v \) is very high (or even uncountable, e.g. graph of spatial layout)
 - “Curse of dimensionality” – in high-dimensional space, most fast search methods become sequential
 - **Cover**: feature selection, dimension reduction, clustering-based data structure (trees), and randomized search
Relevance Feedback

■ Problems:
 ■ Simple distance function does not reflect human’s notion of similarity → Learn from human

■ Cover:
 ■ Classification: Define three different classes P=positive, N=negative, D=don’t care with respect to a query q. Given a small human-labeled set for each class, identify all v in a database D that belongs to class P.
 ■ Learning: Minimize the size of labeled sets
Summarization

Problem:
- How to present 100 clips of video, each 3 hours long, to a user to select?
- Limited capability of receivers

Cover:
- Keyframes, Mosaicing
- Hierarchical Clustering
- Spatial Summary and visualization
- Skim
Examples of Summarization

EMD Search

Structural Parsing

a. Level 1: Clustering of all the video shots by temporal variances

b. Level 2: Clustering of shots under the second class above by color histograms (L*a*b space)

c. Anchorperson shots under the third class at level 2

Skim: Drastically condensed audio-video clips

Shot removal
Meta-Data

- **Problem:**
 - Auxiliary information
 - Unified textual description of features and semantic concepts
 - Highly searchable

- **Cover:**
 - XML, MPEG-7, MPEG-21
 - Traditional IR techniques on texts and hypertext
Auxiliary Information

<Event id="Goal">
 <Label> <Term CSLocation="http://www.CSs.com/Sports" CSTermId="43">Goal</Term> </Label>
 <SemanticLocation>
 <Place> <PlaceName xml:lang='en'> Santiago Bernabeu </PlaceName>
 <Country> Spain </Country>
 <PostalAddress> C/Fabregas No. 26, Barcelona </PostalAddress>
 </Place>
 <SemanticTime>
 <Definition> 8:33pm, Saturday, March 20, 2000 </Definition>
 </SemanticTime>
 <MediaOccurence>
 <MediaLocator><MediaTime> T0:0:0 </MediaTime>
 <MediaDuration> PT5S </MediaDuration>
 </MediaLocator>
</MediaOccurence>
</Event>
<Semantic id="S1">
 <Object id="Forward-ob"> ... </Object>
 <Object id="Ball-ob"> ... </Object>
 <Object id="GoalKeeper-ob"> ... </Object>
 <Object id="Goal-ob"> ... </Object>
 <Event id="Goal-ev">
 <Event id="Kick-ev"> ... </Event>
 <Event id="Not-Catch-ev"> ... </Event>
 <Event id="Enter-ev"> ... </Event>
 </Event>
 <SemanticGraph>
 <Edge name="agent" source="Kick-ev" target="Forward-ob"/>
 <Edge name="patient" source="Kick-ev" target="Ball-ob"/>
 <Edge name="destination" source="Kick-ev" target="Goal-ob"/>
 <Edge name="agent" source="Enter-ev" target="Ball-ob"/>
 <Edge name="patient" source="Enter-ev" target="Goal-ob"/>
 </SemanticGraph>
</Semantic>
Course format

- 3 lectures per week
- 6 homeworks
- 1 final project
 - Two types of projects
 - Experimental or Implementation (up to three persons)
 - Survey (single person)
 - mid-term proposal
 - final report and presentation
 - may be extended to “Advanced Projects”