Lecture 20: Dimension Reduction I
Feature Extraction
(Based on Dr. Gutierrez-Osuna’s lecture notes)
Why Dimension Reduction?

- Curse of Dimensionality

- Applications:
 - Pattern Recognition
 - Similarity Search
 - Visualization
 - Compression

- Different goals
 - Better clustering/classification results
 - Preserve distance relationship
 - Produce as few bits as possible with little loss of quality
Outline

- Curse of Dimensionality
- Feature selection vs. Feature extraction
- Signal Representation vs. Classification
- Principal Component Analysis (PCA)
- Linear Discriminant Analysis (LDA)
- Independent Component Analysis (ICA)
Curse of dimensionality (1)

- The **curse of dimensionality**
 - A term coined by Bellman in 1961
 - Refers to the problems associated with multivariate data analysis as the dimensionality increases
 - We will illustrate these problems with a simple example

- **Consider a 3-class pattern recognition problem**
 - A simple approach would be to
 - Divide the feature space into uniform bins
 - Compute the ratio of examples for each class at each bin and,
 - For a new example, find its bin and choose the predominant class in that bin
 - In our toy problem we decide to start with one single feature and divide the real line into 3 segments

 ![Feature Space Diagram](image)

 - After doing this, we notice that there exists too much overlap among the classes, so we decide to incorporate a second feature to try and improve separability
Curse of dimensionality (2)

- We decide to preserve the granularity of each axis, which raises the number of bins from 3 (in 1D) to $3^2=9$ (in 2D)
 - At this point we need to make a decision: do we maintain the density of examples per bin or do we keep the number of examples had for the one-dimensional case?
 - Choosing to maintain the density increases the number of examples from 9 (in 1D) to 27 (in 2D)
 - Choosing to maintain the number of examples results in a 2D scatter plot that is very sparse

- Moving to three features makes the problem worse:
 - The number of bins grows to $3^3=27$
 - For the same density of examples the number of needed examples becomes 81
 - For the same number of examples, well, the 3D scatter plot is almost empty
- Obviously, our approach to divide the sample space into equally spaced bins was quite inefficient
 - There are other approaches that are much less susceptible to the curse of dimensionality, but the problem still exists

- How do we beat the curse of dimensionality?
 - By incorporating prior knowledge
 - By providing increasing smoothness of the target function
 - By reducing the dimensionality

- In practice, the curse of dimensionality means that, for a given sample size, there is a maximum number of features above which the performance of our classifier will degrade rather than improve
 - In most cases, the additional information that is lost by discarding some features is (more than) compensated by a more accurate mapping in the lower-dimensional space
Dimensionality Reduction (1)

- Two approaches are available to perform dimensionality reduction
 - Feature extraction: creating a subset of new features by combinations of the existing features
 - Feature selection: choosing a subset of all the features (the ones more informative)

\[
\begin{bmatrix}
 x_1 \\
 x_2 \\
 \vdots \\
 x_N \\
\end{bmatrix}
\rightarrow
\begin{bmatrix}
 x_{i1} \\
 x_{i2} \\
 \vdots \\
 x_{iM} \\
\end{bmatrix}
\quad \text{feature selection}
\]

\[
\begin{bmatrix}
 x_1 \\
 x_2 \\
 \vdots \\
 x_N \\
\end{bmatrix}
\rightarrow
\begin{bmatrix}
 y_1 \\
 y_2 \\
 \vdots \\
 y_M \\
\end{bmatrix}
= f
\begin{bmatrix}
 x_1 \\
 x_2 \\
 \vdots \\
 x_N \\
\end{bmatrix}
\]

- The problem of feature extraction can be stated as
 - Given a feature space \(x_i \in \mathbb{R}^N \) find a mapping \(y = f(x) : \mathbb{R}^N \rightarrow \mathbb{R}^M \) with \(M < N \) such that the transformed feature vector \(y_i \in \mathbb{R}^M \) preserves (most of) the information or structure in \(\mathbb{R}^N \).
 - An optimal mapping \(y = f(x) \) will be one that results in no increase in the minimum probability of error.
 - This is, a Bayes decision rule applied to the initial space \(\mathbb{R}^N \) and to the reduced space \(\mathbb{R}^M \) yield the same classification rate.
Dimensionality Reduction (2)

- In general, the optimal mapping \(y = f(x) \) will be a non-linear function
 - However, there is no systematic way to generate non-linear transforms
 - The selection of a particular subset of transforms is problem dependent
 - For this reason, feature extraction is commonly limited to linear transforms: \(y = Wx \)
 - This is, \(y \) is a linear projection of \(x \)
 - NOTE: When the mapping is a non-linear function, the reduced space is called a manifold
The selection of the feature extraction mapping $y=f(x)$ is guided by an objective function that we seek to maximize (or minimize).

Depending on the criteria used by the objective function, feature extraction techniques are grouped into two categories:

- **Signal representation**: The goal of the feature extraction mapping is to represent the samples accurately in a lower-dimensional space.
- **Classification**: The goal of the feature extraction mapping is to enhance the class-discriminatory information in the lower-dimensional space.

Within the realm of linear feature extraction, two techniques are commonly used:

- Principal Components Analysis (PCA)
 - uses a signal representation criterion
- Linear Discriminant Analysis (LDA)
 - uses a signal classification criterion
PCA (1)

- The objective of PCA is to perform dimensionality reduction while preserving as much of the randomness (variance) in the high-dimensional space as possible.
 - Let x be an N-dimensional random vector, represented as a linear combination of orthonormal basis vectors $[\varphi_1 \mid \varphi_2 \mid \ldots \mid \varphi_N]$ as
 \[
 x = \sum_{i=1}^{N} y_i \varphi_i \text{ where } \varphi_i \mid \varphi_j = \begin{cases}
 0 & i = j \\
 1 & i = j
 \end{cases}
 \]
 - Suppose we choose to represent x with only M $(M<N)$ of the basis vectors. We can do this by replacing the components $[y_{M+1}, \ldots, y_N]^\top$ with some pre-selected constants b_i,
 \[
 \hat{x}(M) = \sum_{i=1}^{M} y_i \varphi_i + \sum_{i=M+1}^{N} b_i \varphi_i
 \]
 - The representation error is then
 \[
 \Delta x(M) = x - \hat{x}(M) = \sum_{i=1}^{N} y_i \varphi_i - \left(\sum_{i=1}^{M} y_i \varphi_i - \sum_{i=M+1}^{N} b_i \varphi_i \right) = \sum_{i=M+1}^{N} (y_i - b_i) \varphi_i
 \]
 - We can measure this representation error by the mean-squared magnitude of Δx
 - Our goal is to find the basis vectors φ_i and constants b_i that minimize this mean-square error
 \[
 \varepsilon^2(M) = E[\Delta x(M)]^2 = E \left[\sum_{i=M+1}^{N} \sum_{j=M+1}^{N} (y_i - b_i)(y_j - b_j) \varphi_i \varphi_j \right] = \sum_{i=M+1}^{N} E[(y_i - b_i)^2]
 \]
PCA (2)

As we have done earlier in the course, the optimal values of \(b_i \) can be found by computing the partial derivative of the objective function and equating it to zero

\[
\frac{\partial}{\partial b_i} E[(y_i - b_i)^2] = -2(E[y_i] - b_i) = 0 \Rightarrow b_i = E[y_i]
\]

Therefore, we will replace the discarded dimensions \(y_i \)'s by their expected value (an intuitive solution).

The mean-square error can then be written as

\[
\bar{e}^2(M) = \sum_{i=M+1}^{N} E[(y_i - E[y_i])^2] = \sum_{i=M+1}^{N} E[(x\phi_i - E[x\phi_i])^T (x\phi_i - E[x\phi_i])]
\]

\[
= \sum_{i=M+1}^{N} \phi_i^T E[(x - E[x])(x - E[x])^T] \phi_i = \sum_{i=M+1}^{N} \phi_i^T \Sigma_x \phi_i
\]

where \(\Sigma_x \) is the covariance matrix of \(x \).

We seek to find the solution that minimizes this expression subject to the orthonormality constraint, which we incorporate into the expression using a set of Lagrange multipliers \(\lambda_i \)

\[
\bar{e}^2(M) = \sum_{i=M+1}^{N} \phi_i^T \Sigma_x \phi_i + \sum_{i=M+1}^{N} \lambda_i (1 - \phi_i^T \phi_i)
\]

Computing the partial derivative with respect to the basis vectors

\[
\frac{\partial}{\partial \phi_i} \bar{e}^2(M) = \frac{\partial}{\partial \phi_i} \left[\sum_{i=M+1}^{N} \phi_i^T \Sigma_x \phi_i + \sum_{i=M+1}^{N} \lambda_i (1 - \phi_i^T \phi_i) \right] = 2(\Sigma_x \phi_i - \lambda_i \phi_i) = 0 \Rightarrow \Sigma_x \phi_i = \lambda_i \phi_i
\]

NOTE: \(\frac{d}{dx} (x^T Ax) = (A + A^T)x = 2Ax \)

So \(\phi_i \) and \(\lambda_i \) are the eigenvectors and eigenvalues of the covariance matrix \(\Sigma_x \).
PCA (3)

- We can then express the sum-square error as

\[\bar{e}^2(M) = \sum_{i=M-1}^{N} \phi_i^T \Sigma \phi_i = \sum_{i=M-1}^{N} \phi_i^T \lambda_i \phi_i = \sum_{i=M-1}^{N} \lambda_i \]

- In order to minimize this measure, \(\lambda_i \) will have to be smallest eigenvalues
 - Therefore, to represent \(x \) with minimum sum-square error, we will choose the eigenvectors \(\phi_i \) corresponding to the largest eigenvalues \(\lambda_i \).

PCA dimensionality reduction

The optimal* approximation of a random vector \(x \in \mathbb{R}^N \) by a linear combination of \(M \) (\(M < N \)) independent vectors is obtained by projecting the random vector \(x \) onto the eigenvectors \(\phi_i \) corresponding to the largest eigenvalues \(\lambda_i \) of the covariance matrix \(\Sigma_x \)

*optimality is defined as the minimum of the sum-square magnitude of the approximation error
PCA (4)

- **NOTES**
 - Since PCA uses the eigenvectors of the covariance matrix Σ_x, it is able to find the independent axes of the data under the unimodal Gaussian assumption
 - For non-Gaussian or multi-modal Gaussian data, PCA simply de-correlates the axes
 - The main limitation of PCA is that it does not consider class separability since it does not take into account the class label of the feature vector
 - PCA simply performs a coordinate rotation that aligns the transformed axes with the directions of maximum variance
 - **There is no guarantee that the directions of maximum variance will contain good features for discrimination**

- **Historical remarks**
 - Principal Components Analysis is the oldest technique in multivariate analysis
 - PCA is also known as the Karhunen-Loève transform (communication theory)
 - PCA was first introduced by Pearson in 1901, and it experienced several modifications until it was generalized by Loève in 1963
PCA Example

- Compute the principal components for the following two-dimensional dataset
 - $X = (x_1, x_2) = \{(1,2), (3,3), (3,5), (5,4), (5,6), (6,5), (8,7), (9,8)\}$
 - Let's first plot the data to get an idea of which solution we should expect

- SOLUTION (by hand)
 - The (biased) covariance estimate of the data is:
 $$\Sigma_x = \begin{bmatrix} 6.25 & 4.25 \\ 4.25 & 3.5 \end{bmatrix}$$
 - The eigenvalues are the zeros of the characteristic equation
 $$\Sigma_x \mathbf{v} = \lambda \mathbf{v} \Rightarrow \left| \Sigma_x - \lambda I \right| = 0 \Rightarrow \begin{vmatrix} 6.25 - \lambda & 4.25 \\ 4.25 & 3.5 - \lambda \end{vmatrix} = 0 \Rightarrow \lambda_1 = 9.34; \ \lambda_2 = 0.41;$$
 - The eigenvectors are the solutions of the system
 $$\begin{bmatrix} 6.25 & 4.25 \\ 4.25 & 3.5 \end{bmatrix} \begin{bmatrix} v_{11} \\ v_{12} \end{bmatrix} = \lambda_1 \begin{bmatrix} v_{11} \\ v_{12} \end{bmatrix} \Rightarrow \begin{bmatrix} v_{11} \\ v_{12} \end{bmatrix} = \begin{bmatrix} 0.81 \\ 0.59 \end{bmatrix}$$
 $$\begin{bmatrix} 6.25 & 4.25 \\ 4.25 & 3.5 \end{bmatrix} \begin{bmatrix} v_{21} \\ v_{22} \end{bmatrix} = \lambda_2 \begin{bmatrix} v_{21} \\ v_{22} \end{bmatrix} \Rightarrow \begin{bmatrix} v_{21} \\ v_{22} \end{bmatrix} = \begin{bmatrix} -0.59 \\ 0.81 \end{bmatrix}$$
 - HINT: To solve each system manually, first assume that one of the variables is equal to one (i.e. $v_{i1} = 1$), then find the other one and finally normalize the vector to make it unit-length
The objective of LDA is to perform dimensionality reduction while preserving as much of the class discriminatory information as possible.

- Assume we have a set of D-dimensional samples \(\{x^{(1)}, x^{(2)}, \ldots, x^{(N)}\} \), \(N_1 \) of which belong to class \(\omega_1 \), and \(N_2 \) to class \(\omega_2 \). We seek to obtain a scalar \(y \) by projecting the samples \(x \) onto a line:

\[
y = w^T x
\]

- Of all the possible lines we would like to select the one that maximizes the separability of the scalars.
 - This is illustrated for the two-dimensional case in the following figures.
In order to find a good projection vector, we need to define a measure of separation between the projections

- The mean vector of each class in x and y feature space is

$$\mu_i = \frac{1}{N_i} \sum_{x \in \omega_i} x \quad \text{and} \quad \tilde{\mu}_i = \frac{1}{N_i} \sum_{y \in \omega_i} y = \frac{1}{N_i} \sum_{x \in \omega_i} w^T x = w^T \mu_i$$

- We could then choose the distance between the projected means as our objective function

$$J(w) = \| \tilde{\mu}_1 - \tilde{\mu}_2 \| = \| w^T (\mu_1 - \mu_2) \|$$

- However, the distance between the projected means is not a very good measure since it does not take into account the standard deviation within the classes

This axis yields better class separability

This axis has a larger distance between means
The solution proposed by Fisher is to maximize a function that represents the difference between the means, normalized by a measure of the within-class scatter.

For each class we define the scatter, an equivalent of the variance, as

\[\tilde{S}_i^2 = \sum_{y \in c_i} (y - \tilde{\mu}_i)^2 \]

where the quantity \((\tilde{S}_1^2 + \tilde{S}_2^2) \) is called the within-class scatter of the projected examples.

The Fisher linear discriminant is defined as the linear function \(w^T x \) that maximizes the criterion function

\[J(w) = \frac{|\tilde{\mu}_1 - \tilde{\mu}_2|^2}{\tilde{S}_1^2 + \tilde{S}_2^2} \]

Therefore, we will be looking for a projection where examples from the same class are projected very close to each other and, at the same time, the projected means are as farther apart as possible.
LDA – 2 classes (3)

- In order to find the optimum projection \(w^\ast \), we need to express \(J(w) \) as an explicit function of \(w \).
- We define a measure of the scatter in multivariate feature space \(x \), which are scatter matrices:
 \[
 S_i = \sum_{x \in \omega_i} (x - \mu_i)(x - \mu_i)^T
 \]
 \[
 S_1 + S_2 = S_W
 \]
 where \(S_W \) is called the within-class scatter matrix.
- The scatter of the projection \(y \) can then be expressed as a function of the scatter matrix in feature space \(x \):
 \[
 \tilde{S}^2 = \sum_{y \in \omega_i} (y - \tilde{\mu})^2 = \sum_{x \in \omega_i} (w^T x - w^T \mu_i)^2 = \sum_{x \in \omega_i} w^T (x - \mu_i)(x - \mu_i)^T w = w^T S_W w
 \]
 \[
 \tilde{S}^2 = w^T S_W w
 \]
- Similarly, the difference between the projected means can be expressed in terms of the means in the original feature space
 \[
 (\tilde{\mu}_1 - \tilde{\mu}_2)^2 = (w^T \mu_1 - w^T \mu_2)^2 = w^T (\mu_1 - \mu_2)(\mu_1 - \mu_2)^T w = w^T S_B w
 \]
 where \(S_B \) is called the between-class scatter. Note that, since \(S_B \) is the outer product of two vectors, its rank is at most one.
- We can finally express the Fisher criterion in terms of \(S_W \) and \(S_B \) as:
 \[
 J(w) = \frac{w^T S_B w}{w^T S_W w}
 \]
LDA – 2 classes (4)

- To find the maximum of $J(w)$ we derive and equate to zero:

$$\frac{d}{dw} J(w) = \frac{d}{dw} \left[\frac{w^TS_Bw}{w^TS_ww} \right] = 0 \Rightarrow$$

$$\Rightarrow \left[w^TS_ww \right] \frac{d}{dw} \left[w^TS_Bw \right] - \left[w^TS_Bw \right] \frac{d}{dw} \left[w^TS_ww \right] = 0 \Rightarrow$$

$$\Rightarrow \left[w^TS_ww \right] 2S_Bw - \left[w^TS_Bw \right] 2S_ww = 0$$

- Dividing by w^TS_ww

$$\frac{w^TS_ww}{w^TS_ww} S_Bw - \frac{w^TS_Bw}{w^TS_ww} S_ww = 0 \Rightarrow$$

$$\Rightarrow S_Bw - JS_ww = 0 \Rightarrow$$

$$\Rightarrow S_w^{-1}S_Bw - Jw = 0$$

- Solving the generalized eigenvalue problem ($S_w^{-1}S_bw = Jw$) yields

$$w^* = \arg\max_w \left\{ \frac{w^TS_Bw}{w^TS_ww} \right\} = S_w^{-1}(\mu_1 - \mu_2)$$

- This is known as Fisher’s Linear Discriminant (1936), although it is not a discriminant but rather a specific choice of direction for the projection of the data down to one dimension.
LDA Example

- Compute the Linear Discriminant projection for the following two-dimensional dataset
 - \(X_1 = (x_1, x_2) = \{(4, 1), (2, 4), (2, 3), (3, 6), (4, 4)\} \)
 - \(X_2 = (x_1, x_2) = \{(9, 10), (6, 8), (9, 5), (8, 7), (10, 8)\} \)

- **SOLUTION (by hand)**
 - The class statistics are:
 - \(S_1 = \begin{bmatrix} 0.80 & -0.40 \\ -0.40 & 2.60 \end{bmatrix} \)
 - \(S_2 = \begin{bmatrix} 1.84 & -0.04 \\ -0.04 & 2.64 \end{bmatrix} \)
 - \(\mu_1 = [3.00, 3.60] \)
 - \(\mu_2 = [8.40, 7.60] \)
 - The within- and between-class scatter are:
 - \(S_B = \begin{bmatrix} 29.16 & 21.60 \\ 21.60 & 16.00 \end{bmatrix} \)
 - \(S_W = \begin{bmatrix} 2.64 & -0.44 \\ -0.44 & 5.28 \end{bmatrix} \)
 - The LDA projection is then obtained as the solution of the generalized eigenvalue problem
 \[
 S_W^{-1} S_B v = \lambda v \Rightarrow S_W^{-1} S_B - \lambda I = 0 \Rightarrow \begin{vmatrix} 11.89 - \lambda & 8.81 \\ 5.08 & 3.76 - \lambda \end{vmatrix} = 0 \Rightarrow \lambda = 15.65
 \]
 \[
 \begin{bmatrix} 11.89 & 8.81 \\ 5.08 & 3.76 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = 15.65 \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} \Rightarrow \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} 0.91 \\ 0.39 \end{bmatrix}
 \]
 - Or directly by
 \[w^* = S_W^{-1} (\mu_1 - \mu_2) = [-0.91, -0.39]^T \]
Fisher’s LDA generalizes very gracefully for C-class problems

- Instead of one projection \(y \), we will now seek \((C-1)\) projections \([y_1, y_2, \ldots, y_{C-1}]\) by means of (C-1) projection vectors \(w_i \), which can be arranged by columns into a projection matrix \(W = [w_1, w_2, \ldots, w_{C-1}] \):

\[
y_i = w_i^T x \quad \Rightarrow \quad y = W^T x
\]

Derivation

- The generalization of the within-class scatter is

\[
S_w = \sum_{i=1}^{C} S_i
\]

where \(S_i = \sum_{x \in C_i} (x - \mu_i)(x - \mu_i)^T \) and \(\mu_i = \frac{1}{N_i} \sum_{x \in C_i} x \)

- The generalization for the between-class scatter is

\[
S_B = \sum_{i=1}^{C} N_i (\mu_i - \mu)(\mu_i - \mu)^T
\]

where \(\mu = \frac{1}{N} \sum_{x} x = \frac{1}{N} \sum_{x \in C_i} N_i \mu_i \)

- where \(S_T = S_B + S_W \) is called the total scatter matrix
LDA – C classes (2)

- Similarly, we define the mean vector and scatter matrices for the projected samples as
 \[
 \tilde{\mu}_i = \frac{1}{N_i} \sum_{y \in w_i} y, \quad \tilde{S}_w = \sum_{i=1}^{C} \sum_{y \in w_i} (y - \tilde{\mu}_i)(y - \tilde{\mu}_i)^T
 \]
 \[
 \tilde{\mu} = \frac{1}{N} \sum_{y} y, \quad \tilde{S}_b = \sum_{i=1}^{C} N_i (\tilde{\mu}_i - \tilde{\mu})(\tilde{\mu}_i - \tilde{\mu})^T
 \]

- From our derivation for the two-class problem, we can write
 \[
 \tilde{S}_w = W^T S_w W, \quad \tilde{S}_b = W^T S_b W
 \]

- Recall that we are looking for a projection that maximizes the ratio of between-class to within-class scatter. Since the projection is no longer a scalar (it has C-1 dimensions), we then use the determinant of the scatter matrices to obtain a scalar objective function:
 \[
 J(W) = \frac{|\tilde{S}_b|}{|\tilde{S}_w|} = \frac{|W^T S_b W|}{|W^T S_w W|}
 \]

- And we will seek the projection matrix \(W^* \) that maximizes this ratio
LDA – C classes (3)

- It can be shown that the optimal projection matrix W^* is the one whose columns are the eigenvectors corresponding to the largest eigenvalues of the following generalized eigenvalue problem:

$$W^* = [w_1' \mid w_2' \mid \cdots \mid w_{c-1}'] = \text{argmax} \left(\frac{W^T S_B W}{W^T S_W W} \right) \Rightarrow (S_B - \lambda_i S_W)w_i' = 0$$

- **NOTES**
 - S_B is the sum of C matrices of rank one or less and the mean vectors are constrained by
 $$\frac{1}{C} \sum_{i=1}^{C} \mu_i = \mu$$
 - Therefore, S_B will be of rank $(C-1)$ or less
 - This means that only $(C-1)$ of the eigenvalues λ_i will be non-zero
 - The projections with maximum class separability information are the eigenvectors corresponding to the largest eigenvalues of $S_W^{-1}S_B$
 - LDA can be derived as the Maximum Likelihood method for the case of normal class-conditional densities with equal covariance matrices
LDA vs. PCA

- These figures show the performance of PCA and LDA on an odor recognition problem
 - Five types of coffee beans were presented to an array of chemical gas sensors
 - For each coffee type, 45 "sniffs" were performed and the response of the gas sensor array was processed in order to obtain a 60-dimensional feature vector

- Results
 - From the 3D scatter plots it is clear that LDA outperforms PCA in terms of class discrimination
 - This is one example where the discriminatory information is not aligned with the direction of maximum variance
Limitations of LDA

- LDA produces at most C-1 feature projections
 - If the classification error estimates establish that more features are needed, some other method must be employed to provide those additional features

- LDA is a parametric method since it assumes unimodal Gaussian likelihoods
 - If the distributions are significantly non-Gaussian, the LDA projections will not be able to preserve any complex structure of the data, which may be needed for classification

- LDA will fail when the discriminatory information is not in the mean but rather in the variance of the data
Independent Component Analysis (ICA)

- PCA: find subspace with largest variance
- ICA: find subspace that independent from the rest
- PCA = ICA for Gaussian Data but different significantly when not
Uncorrelated vs. Independent

- Are x and y uncorrelated?
- Are x and y independent?
Simple “Cocktail Party” Problem

Unknown mixing matrix A

s_1 → x_1

s_2 → x_2

Observations

n sources, $m=n$ observations

$x = As$
Motivation

Two Independent Sources Mixture at two Mics

\[x_1(t) = a_{11}s_1 + a_{12}s_2 \]
\[x_2(t) = a_{21}s_1 + a_{22}s_2 \]

\(a_{ij} \ldots \) Depend on the distances of the microphones from the speakers
Motivation

Get the Independent Signals out of the Mixture
Definition and Applications

Problem Statement

Given inputs x_1, x_2, \ldots, x_n, find transformation W

\[
\begin{pmatrix}
y_1 \\
\vdots \\
y_m
\end{pmatrix} = W
\begin{pmatrix}
x_1 \\
x_2 \\
x_n
\end{pmatrix}
\]

such that y_1, \ldots, y_m are independent of each other

Applications:

- “cocktail party problem” (Blind source separation)
 - Neurological signal separation from electroencephalograms (EEG)
 - Separation of noise from signals in mobile
 - Climate studies – separating El Nino from Volcano

- Multimedia: compression, watermarking
ICA Estimation Principle

- **Principle 1: Nonlinear decorrelation**
 - Find the matrix W so that for any $i \neq j$, the components y_i and y_j are uncorrelated, AND the transform components $g(y_i)$ and $g(y_j)$ are uncorrelated, where g and h are some suitable non-linear function.

- **Principle 2: Maximum non-gaussianity**
 - Find the local maxima of non-gaussianity of a linear combination $y = \sum b_i x_i$ under the constraint that the variance of y is constant. Each local maximum gives one independent component.
By Central Limit Theorem, \(y = \sum_i p_i x_i \) would normally be “more” Gaussian than individual components.

This would not be the case. \(y \) is one of the recovered independent sources \(s \) – it will be “less” Gaussian than any of the \(x \)’s.
Measures of Non-Gaussianity

- We need to have a quantitative measure of non-gaussianity for ICA Estimation.
- Kurtosis: gauss=0 (sensitive to outliers)
 \[kurt(y) = E\{y^4\} - 3(E\{y^2\})^2 \]
- Entropy: gauss=largest
 \[H(y) = -\int f(y) \log f(y) dy \]
- Neg-entropy: gauss = 0 (difficult to estimate)
 \[J(y) = H(y_{gauss}) - H(y) \]
- Approximations
 \[J(y) = \frac{1}{12} E\{y^2\}^2 + \frac{1}{48} kurt(y)^2 \]
 \[J(y) \approx \left[E\{G(y)\} - E\{G(v)\} \right]^2 \]
- where \(v \) is a standard gaussian random variable and:
 \[G(y) = \frac{1}{a} \log \cosh(a.y) \]
 \[G(y) = -\exp(-a.u^2 / 2) \]