Lecture 24: Digital Watermarking II

Compiled from lecture notes by Prof. Ja-Ling Wu of National Taiwan University and the book “Digital Watermarking” by I.J. Cox, M.L. Miller and J.A. Bloom
Outline

- Communication-based models of watermarking
 - Applied well-established communication and information-theoretical techniques to watermarking
 - Three models: basic model, side-information model, multiplexing model

- Geometric models of watermarking

- Informed embedding and coding
Standard model of a communication system

- m: the message we want to transmit
- x: the codeword encoded by the channel encoder
- n: the additive random noise
- y: the received signal
- m_n: the received message
Prior to transmission, cryptography is used to encrypt a message using a key.

The encrypted message (ciphertext) is transmitted over the channel.

At the receiver, the ciphertext is received and decrypted using the related key to reveal the cleartext.

Alternatively: (like in spread spectrum technique – better capacity, prevent jamming)
Covered work is treated as unknown channel noise and the goal is to recover the watermark with as high a fidelity as possible.
Watermarking as communication with side information

- Remove the independent assumption between watermark encoding and cover work
- The encoder is able to exploit some information about the channel noise
 - Embed in the direction orthogonal to the cover work.
Watermarking as Multiplexed Communications

- Emphasize the symmetry between the watermark and the cover work
- Perceptual model to minimize distortion to work
A simple watermarking system: Encoding phase

- An one-bit message m is embedded.
- w_r is the predefined reference pattern
- The message pattern w_m is equal to w_r or $-w_r$ according to the value of m.
- The value α controls the trade-off between visibility and robustness.

$$c_w = c_o + w_a$$
$$w_a = \alpha w_m$$
$$w_m = \begin{cases}
 w_r, & m = 1 \\
 -w_r, & m = 0
\end{cases}$$
A simple watermarking system: Decoding phase

- The linear correlation between the received image \(c \) and the reference pattern \(w_r \) is computed.

- Whether a watermark is presented is decided by placing a threshold

\[
z_{lc}(c, w_r) = \frac{1}{N} c \cdot w_r
\]

\[
= \frac{1}{N} \sum_{x,y} c[x, y] w_r[x, y]
\]

\[
z_{lc}(c, w_r) = \frac{1}{N} (c_o \cdot w_r + w_a \cdot w_r + n \cdot w_r)
\]

\[
m_n = \begin{cases}
1 & \text{if } z_{lc}(c, w_r) > \tau_{lc} \\
0 & \text{if } z_{lc}(c, w_r) < -\tau_{lc}
\end{cases}
\]
Geometric models of watermarking

- Media space: a high-dimensional space in which each point corresponds to one original Work.
- Marking space: projections or distortions or media space
 - Regions
 - Region of acceptable fidelity
 - Embedding region
 - Detection region
 - Distributions
 - Distribution of unwatermarked Work
 - Embedding distribution
 - Distortion distribution
Marking space

- Don’t use the original work but instead use a projection of it (mark)
 - Reduce the cost of embedding and detection
 - Simpler modeling of source modeling

- Example:

 ![Image of a girl](image1.png)

 ![Image of a girl](image2.png)

 VERSUS

 - Correlation and thresholding
 - Partition and average
 - Mark

 ![Correlation and thresholding](image3.png)

 ![1 vs -1](image4.png)

 ![Partition and average](image5.png)
Linear correlation

- The linear correlation between two vectors is the average product of their elements.
- The detection region consists of all points on one side of a hyper-plane.
- The hyper-plane is perpendicular to the reference mark, and its distance is determined by the detection threshold.
- Sensitive to the change of magnitude of the cover work.

\[z_{lc}(v, w_r) = \frac{1}{N} \sum_{i} v[i] w_r[i] \]
The region of acceptable fidelity and the detection region

- The region of acceptable fidelity is usually decided by placing a threshold on some measure of (perceptual) distance
 - Common distance measures
 - **MSE**
 - **SNR**
- For the detection region, the detection measure is the linear correlation, that is, the projection of c onto w_r
How to embed more bits?

Embed n-bits:
- Select n orthogonal reference patterns $w_r[i]$
 - Pseudo random patterns usually work
- The message pattern $w_m[i]$ is equal to $w_r[i]$ or $-w_r[i]$ according to the value of the i-th message bit $m[i]$.

Detection:

$$c_w = c_o + w_a$$

$$w_a = \alpha w_m$$

$$w_m = \sum_{i=0}^{n} w_m[i]$$

$$w_m[i] = \begin{cases} w_r[i], m[i] = 1 \\ -w_r[i], m[i] = 0 \end{cases}$$

$$\hat{m}[i] = \begin{cases} 1, & c_w \cdot w_r[i] > \tau \\ 0, & c_w \cdot w_r[i] \leq \tau \end{cases}$$
The previous scheme is essentially Code Division Multiplexing Access (CDMA)

Other multiplexing can be use:
- Space: put different bits at different parts of an image
- Frequency: put different bits at different frequency bands of an image

Constrained by the same signal power, noise immunity decreases as more bits are inserted

Error correction coding is typically used: not all possible code-words are used
Using the knowledge about the cover work for embedding

- **Informed embedding**
 - Input message m
 - Message Coding w_m
 - Watermark embedder w_a
 - Watermark decoder m_n
 - Original cover work C_o

- **Informed coder**
 - Input message m
 - Message Coding w_m
 - Watermark embedder w_a
 - Watermark decoder m_n
 - Original cover work C_o
Simple Informed embedder

- By adjusting the embedding strength, we can ensure a 100% embedding effectiveness

\[z_{lc}(c_w, w_m) = \frac{1}{N}(c_o \cdot w_m + w_a \cdot w_m) \]

\[= \frac{1}{N}(c_o \cdot w_m + \alpha w_a \cdot w_m) \]

\[z_{lc}(c_w, w_m) = \tau_{lc} + \beta \]

\[\Rightarrow \alpha = \frac{N(\tau_{lc} + \beta) - c_o \cdot w_m}{w_m \cdot w_m} \]

\[\alpha \text{ is big if } c_o \text{ is uncorrelated with } w_m \]
Effects of the scaling factor

The same vector of w_a is added in every case.

The vector added to each un-watermarked Work is chosen to guarantee that the resulting work lies in detection region.
Surprising Results by Costa (1983)

Dirty paper problem:

Costa shows that the channel capacity is still \(\frac{1}{2} \log(1+\frac{P}{N_1}) \), independent of the first noise

It’s called Dirty paper because \(N_0 \) represents the noise from the paper which is known to the transmitter.
How does that work?

- Recall channel capacity is the same as the ball packing problem
Dirty Code

In the space of the first noise source
Many interesting watermarking schemes to implement informed coder

- Quantized Index Modulation (2000)
- Syndrome Coding (2000)
- Relationship with Distributed Coding