EE640 Homework #5 (Due March 26, 2013)

You are encouraged to work in groups but you must turn in your own work. Also, please start early. Good luck.

1. (20 points) Basic MMSE

Define the probability mass function $p : \Omega \to \mathbb{R}$ by

$$p(\omega) = 3, 2, 1, 1, 2, 1$$

for $\omega \in \Omega = \{1, \ldots, 6\}$

Define random variable $X : \Omega \to \mathbb{R}$ by $X(\omega) = (\omega - 4)^2$. We are interested in measuring X but a coarse equipment can return the following measurement variable $Y : \Omega \to \mathbb{R}$:

$$Y(\omega) = 0, 2.5, 2.5, 8, 8, 8$$

for $\omega = 1, \ldots, 6$

(a) Interpret $E(X|Y)$ as a function of Y values or $f(Y)$. Verify that $EX = E(E(X|Y))$.

(b) Interpret $E(X|Y)$ as a function on Ω, so $E(X|Y)$ has value $f(Y(\omega))$ at ω. Plot $E(X|Y)$ and X over the ω-axis. Use the plots to explain why $E(X|Y)$ minimizes the square error $E((X - f(Y))^2)$ among any Borel measurable function f.

(c) Use the projection theorem to prove that $E[E(X|Y,Z)|Y] = E(X|Y)$.

(d) Use the definition of conditional expectation to prove that $E[E(Xg(Y)|Y)] = g(Y)E(X|Y)$.

2. (20 points) More on conditional expectation

(a) Prove the “tower property” of conditional expectation: i.e $E[E(X|Y)] = EX$.

(b) X_1, X_2, \ldots are a sequence of independent identically-distributed random variables with mean $E(X)$ and variance $Var(X)$. You are asked to randomly select a positive integer N and compute the expectation and variance of $Y_N = \sum_{i=1}^{N} X_i$. Hint: Use part a.

(c) Will your answer to part b change if N is not independent of X_1, X_2, \ldots?

3. (20 points) LLSE

Let $U = (X_1 X_2 Y)^T$ where

$$X_2 = X_1 + W$$

$$Y = X_1 + W + Z$$

and $V = (X_1 W Z)^T$ has $E(V) = 0$ and $E(VV^T) = I$.

(a) Exhibit $E(UU^T)$.

(b) Find the LLSE of Y given X_1.

(c) Find the LLSE of Y given X_1 and X_2.

(d) The last two parts show that the LLSE based on X_1 may utilize X_1 but when X_2 is also available then X_1 is no longer needed. You might have predicted this at the outset. Why?

4. (20 points) LLSE vs. MMSE

(a) Let X and Y be IID and exponentially distributed mean 1. Calculate $E[X|\min(X,Y)]$ and the LLSE $E(X|\min(X,Y))$.

(b) Let W be a standard Gaussian $N(0,1)$ random variables. For each of the following cases, find the MMSE $E(V|U)$ and the LMSE $E(V|U)$:

i. $V = W^3$ and $U = W$

ii. $V = W^2$ and $U = W^3$
5. (20 points) **Multivariate Gaussian**

Let $\mathbf{Y} = (Y_1 \ Y_2 \ \ldots \ Y_m)^T$ be a Gaussian vector with mean μ_Y and covariance matrix C_Y, and $\mathbf{X} = (X_1 \ X_2 \ \ldots \ X_k)^T$ be another Gaussian vector with mean μ_X and covariance C_X. Let $\mathbf{Z} = (\mathbf{X}^T \mathbf{Y}^T)^T$. Assume that \mathbf{Z} is jointly Gaussian, we know that the mean and covariance of \mathbf{Z} can be expressed as follows:

$$E(\mathbf{Z}) = \begin{bmatrix} \mu_X \\ \mu_Y \end{bmatrix}$$

$$C_Z = \begin{bmatrix} C_X & C_{XY} \\ C_{YX} & C_Y \end{bmatrix}$$

where $C_{XY} = \text{Cov}(\mathbf{X}, \mathbf{Y}) = C_Y^T X$.

(a) Let $\hat{\mathbf{X}}(\mathbf{Y}) = \mu_X + C_{XY} C_Y^{-1}(\mathbf{Y} - \mu_Y)$. Show that $\mathbf{X} - \hat{\mathbf{X}}(\mathbf{Y})$ and $\hat{\mathbf{X}}(\mathbf{Y})$ are independent of each other.

(b) Show that the conditional distribution of \mathbf{X} given \mathbf{Y} is jointly Gaussian with mean $\mu_{X|Y} = \hat{\mathbf{X}}(\mathbf{Y})$ and covariance $C_{X|Y} = C_X - C_{XY} C_Y^{-1} C_{YX}$.
