Clipping
Clipping Lines and Polygons

What is clipping?

Goal: only render what will be visible in the drawing window; eliminate from the rendering pipeline all those primitives which will not appear in the final viewport.

World coordinate system → Window in WCS → Viewport on CRT
Clipping Approaches

Individual Pixel Tests:
- Render at the pixel level
- Check pixel for containment in the target region

Maintain Large Drawing Area:
- Render the entire set of primitives in the WCS
- Display only the portion of the set which overlaps the viewport

Analytical Methods:
- Compute the intersections of primitives with the clip region
- Eliminate outlying portions of the primitives
Analytical Clipping

Brute force method: compute all intersections of line with clip rectangle

\[P_1 = \{ y = y_{\text{min}} \} \cap \{ y = mx + b \} \]

\[P_2 = \{ x = x_{\text{max}} \} \cap \{ y = mx + b \} \]
Cohen-Sutherland Clipper

- Use *regions* to accept/reject lines
- Assume the clipping region is an axis-oriented rectangle

Regions are labeled according to the half-planes defined by the clipping region:

- $y = y_{\max}$
- $y = y_{\min}$
- $x = x_{\min}$
- $x = x_{\max}$
Assign a bit to each condition to form a code for the nine regions

bit 1: sign bit of \((y_{\text{max}} - y)\)
bit 2: sign bit of \((y - y_{\text{min}})\)
bit 3: sign bit of \((x_{\text{max}} - x)\)
bit 4: sign bit of \((x - x_{\text{min}})\)
The Cohen-Sutherland Algorithm

Let c_1 and c_2 be the region codes for the endpoints of the line to be clipped.

Trivially **Accept:**
Both codes are 0000 \rightarrow segment is inside the clip region

Trivially **Reject:**
(code 1) && (code 2) are not equal to zero \rightarrow
Line is outside clip rectangle
(both endpoints must be on the same side of one of the four clip lines in order to yield a bitwise & that is non-zero)
Iterative Part of the Algorithm

Repeat until the segment cannot be trivially accepted or rejected:

• Subdivide the segment:

 • Pick the endpoint which is outside the clip rectangle (one must be outside)
 • Find the first non-zero bit: this corresponds to the clip edge which intersects the line
 • Compute the intersection of the line with the edge
 • Throw away the outside vertex up to the clip rectangle

\[
\{ y = mx + b \} \cap \{ y = x_{\min} \} \Rightarrow x_{\min} = mx + b \Rightarrow x = \frac{x_{\min} - b}{m}
\]
An Example

Subdivide using either A or E

E: 1010
A: 0100
&: 0000

top bottom right left
Example, Con’t

Subdivide: Third bit of D indicates that the line intersects the right clip line.
Example (Con’t)

C: 0000
A: 0100
&: 0000

Subdivide: Second bit of A indicates that the line intersects the bottom clip line
Example: Conclusion

C: 0000
B: 0000
&: 0000

Trivially accept the clipped segment BC
Cohen-Sutherland Summary

Disadvantages:
- Fixed-order decision can do needless work
- Can improve using more regions (Nicholl-Lee-Nicholl Alg)
- Can generate more efficient rejection tests
- Clipping window must be rectangular

Advantages:
- Simple to implement
- Oriented for most simple window/viewport systems
- Extends to 3-D cubic volumes
The Liang-Barsky Line clipper (parametric line clipping)

Parametric Line

\[x = x_1 + t\Delta x \]
\[y = y_1 + t\Delta y \]

where

\[\Delta x = x_2 - x_1, \Delta y = y_2 - y_1 \]
\[t \in [0,1] \]
Clipping Condition

\[y = y_{\max} \]

\[y = y_{\min} \]

\[x = x_{\min} \]

\[x = x_{\max} \]

\[x_{\min} \leq x_1 + t\Delta x \leq x_{\max} \]

\[y_{\min} \leq y_1 + t\Delta y \leq y_{\max} \]
Intersection Conditions

\[x_{\text{min}} \leq x_1 + t\Delta x \leq x_{\text{max}} \]
\[y_{\text{min}} \leq y_1 + t\Delta y \leq y_{\text{max}} \]

\[tp_k \leq q_k \]

where

\[p_1 = -\Delta x, \quad q_1 = x_1 - x_{\text{min}} \]
\[p_2 = \Delta x, \quad q_2 = x_{\text{max}} - x_1 \]
\[p_3 = -\Delta y, \quad q_3 = y_1 - y_{\text{min}} \]
\[p_4 = \Delta y, \quad q_4 = y_{\text{max}} - y_1 \]
Conditions

- If \((p_k = 0)\) – parallel line to one of the clipping edge
 - \((q_k < 0)\) – outside, reject
 - \((q_k \geq 0)\) – inside
- If \((p_k < 0)\) – from outside to inside
 - Intersection at: \(t = \frac{q_k}{p_k}\) (OIP)
- If \((p_k > 0)\) – from inside to outside
 - Intersection at: \(t = \frac{q_k}{p_k}\) (IOP)

Key Insight: we need to find two intersection points, one OIP, one IOP.
Intersection Point Computation

- For \(p_k < 0 \) (Outside to inside point)
 - \(r_k = q_k/p_k \)
 - OIP \(t_1 = \max(r_k, 0) \)

- For \(p_k > 0 \) (Inside to outside point)
 - \(r_k = q_k/p_k \)
 - IOP \(t_2 = \min(r_k, 1) \)

- If \(t_1 > t_2 \), complete outside, REJECT
- Else clipped line is between \((t_1, t_2) \)
Liang-Barsky Line Clipping Example

\[y_{\text{max}} = 9 \]

\[y_{\text{min}} = 4 \]

\[x_{\text{min}} = 10 \]

\[x_{\text{max}} = 20 \]
Summary: Liang-Barsky

- (x, y) coordinates are only computed for the two final intersection points.
- At most 4 parameter values are computed.
- This is a non-iterative algorithm.
- Can be extended to 3-D.
Take Home Exercise

Work through the Cohen-Sutherland Clipping Algorithm using the following example

\[
\begin{align*}
(7,10) & \quad X_{\text{min}}=10 & X_{\text{max}}=20 \\
Y_{\text{min}}=4 & \quad Y_{\text{max}}=9 \\
\end{align*}
\]

<table>
<thead>
<tr>
<th>Start</th>
<th>Code</th>
<th>End</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>(7,10)</td>
<td>1001</td>
<td>(21,3)</td>
<td>0110</td>
</tr>
<tr>
<td>??</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Take Home Exercise

- Clip the following line using the Liang-Barsky algorithm

\[y_{\text{max}} = 9 \]
\[y_{\text{min}} = 4 \]
\[x_{\text{min}} = 10 \]
\[x_{\text{max}} = 20 \]