CS 335
Graphics and Multimedia

Polygons:
Representation and Scan Conversion
Scan Converting Regions

Basic algorithm (rectangles):
For \(y = y_{\text{min}} \) to \(y_{\text{max}} \)
 For \(x = x_{\text{min}} \) to \(x_{\text{max}} \)
 DrawPixel \((x, y, \text{color})\)

\((x_{\text{min}}, y_{\text{min}})\)
\((x_{\text{max}}, y_{\text{max}})\)
Vocabulary

- **Spatial Coherence**
 - values do not change or change slowly with changes in x and y

- **Scan-line Coherence**
 - adjacent scan lines are similar

- **Edge Coherence**
 - Edges of polygon don’t change rapidly with changes in x and y

- **Temporal Coherence**
 - Small changes with respect to time
Defining Polygons

Polygon:
Closed curve
Linear edges
Ordered vertices
Representing Polygons

Ordered vertex/edge list:

\[
P_{\text{triangle}} = (e_1, e_2, e_3)
\]

\[
v_i = (x_i, y_i)
\]

\[
e_i = (v_i, v_j)
\]

\[
P_{\text{triangle}} = (v_1, v_2, v_3)
\]

\[
P_{\text{triangle}} = ((x_1, y_1), (x_2, y_2), (x_3, y_3))
\]

Order is important:
Scan-Converting Polygons

- Allowable polygons:
 - Convex
 - Concave
 - Self-intersecting

- Approach:
 - Calculate extrema of each scan-line span
 - Extrema come from intersection of scan-line with polygon

- Key Features:
 - Scan-line coherence yields incremental algorithm
Example: Rectangle

For \(y = y_{\text{min}} \) to \(y_{\text{max}} \)
For \(x = x_{\text{min}} \) to \(x_{\text{max}} \)
DrawPixel \((x, y, \text{color})\)

Scan-line coherence: extrema are always the same
Example: Triangle

For $y = y_{\text{min}}$ to y_{max}

Compute x_{start} and x_{end}

For $x = x_{\text{start}}$ to x_{end}

DrawPixel (x, y, color)

Scan-line coherence: extrema change slowly
Triangle Fill Scan Conversion

Algorithm Input: Triangle end points $(x_1,y_1), (x_2,y_2), (x_3,y_3)$

Algorithm Output: List of horizontal line segments indexed by scan line

$$\{(y_i,x_{S_i},x_{E_i})\}$$

Motivation: Just as we approximate curves by small straight lines, we often approximate areas and surfaces by small triangles.

All polygons can be decomposed into triangles if you work hard enough! (computational geometry!)
Fill Algorithm

Idea: step an intersection ray α from low y-values to high values (vertical axis) and maintain a list of intersection points
Basic Idea

Sort \((x_1,y_1), (x_2,y_2), (x_3,y_3)\) such that \(y_1 \leq y_2 \leq y_3\)

Order distinct lines on y-axis, convert y coordinate to discrete integer values

Equation of line:

\[
y_k = y_1 + k
\]

\[
x_k = x_1 + \frac{x_2 - x_1}{y_2 - y_1} k
\]

\[
= x_1 + \frac{1}{m} k
\]

give change in \(x\) per unit change in \(y\).
Special Cases

Careful! $\Delta y = 0$, $m = \infty$
Techniques

1. Sort 1, 2, 3
2. Break in 2 pieces = Special cases

Special Cases:

- $y_1 = y_2$ no step I
- $y_2 = y_3$ no step II
3. Ignore direction if we use line primitive to fill the scan line in either direction!

4. 3 equations: as long as

\[y_i = mx + b \]

we have

\[\Delta y = 1 \quad \Rightarrow \quad \Delta x = \frac{\Delta y}{m} = \frac{1}{m} \]

Since

\[\frac{1}{m} = \frac{\Delta x}{\Delta y} \]

so we are OK if we handle \(\Delta y = 0 \) separately!
Triangle Fill Procedure (Rendering)

1. Sort endpoints in y such that $y_1 \leq y_2 \leq y_3$

2. Unless $y_1 = y_2$, do part I, that is,

 loop:

 step $y = y_1, K, y_2 - 1$
 use 2 slopes:

 $m_{2,1}^{-1} = \frac{x_2 - x_1}{y_2 - y_1}$ and $m_{3,1}^{-1} = \frac{x_3 - x_1}{y_3 - y_1}$

 Compute:

 $X_{\text{start}} = X_1 + k(m_{2,1})^{-1}$
 $X_{\text{end}} = X_1 + k(m_{3,1})^{-1}$
3. After $y = y_2 - 1$, update X_{start} and X_{end} change slope:

$$m_{2,1}^{-1} \rightarrow m_{2,3}^{-1} = \frac{x_3 - x_2}{y_3 - y_2}$$

4. Continue part II

loop step $y = y_2, \ldots, y_3$

$$X_{\text{start}} = X_2 + k(m_{2,3})^{-1}$$

$$X_{\text{end}} = X_1 + k(m_{3,1})^{-1}$$

5. Special cases:

if $y_1 = y_2$, skip to here and do part II

if $y_2 = y_3$, stop here before starting II (draw at $y = y_2$ first!)
Polygon Scan-Conversion

- Basic algorithm: For all Scan-lines
 - Find intersection of scan line with polygon
 - Do this **incrementally**
 - Draw pixels inside of polygon

- Special concerns:
 - Concave polygons - intersection is a set of segments, not just one segment
 - Edge intersections (vertices)
Concave Polygons
Inside or Outside

Count Intersections:
- Start ray outside polygon
- Count all intersections
- Inside/outside changes with each intersection

Problem points:
- Tangents
- Multiple intersections at vertices
- Starting ray outside

If the number of crossed edges is odd Then we are in the interior
Steps for Scan Conversion

- Find intersections of scan-line with primitive
- Sort intersections in x coordinate
- Draw parts of scan-line that are inside primitive using an inside/outside counter
Special Cases to Manage

- Fractional intersection
- Intersection at a vertex
- Intersection with a horizontal edge
Conventions for Polygons

- **Fractional Intersection:** Inside moving right - round down. Outside moving right - round up.

- **Vertex intersection:**
 - if a vertex is a minimum for an edge (lower vertex), count it as an intersection.
 - if a vertex is a maximum for an edge (upper vertex), do not count it.

- **Horizontal edges:** do not count vertices of horizontal edges in the inside/outside count.
Fill Algorithms

Fill in the border of a closed geometric primitive.

Must define what we mean by border.

[paint-brush demo]
Connectivity

4 connected
\[x, y \rightarrow x \pm 1, y \]
\[x, y \pm 1 \]

8-connected
\[(x, y) \rightarrow x \pm 1, y \]
\[x, y \pm 1 \]
\[x \pm 1, y+1 \]
\[x \pm 1, y-1 \]
Examples

4-connect

8-connect

Note: every 4-connected region is also 8-connected.
4-Connected Boundary Fill Algorithm

Task: Given boundary, paint 4 connected interior

Input:
1. Raster area with boundary of 4-connected area, boundary pixel values are equal to B
2. Internal start point (x,y)
3. Flood fill value F

Output: Filled raster area, stopped when 4-connected to boundary.
Algorithm : 4B_Fill (x,y,F,B)

Function 4B_Fill (x,y,F,B)

Value = get_pixel (x,y)

If Value ≠ B and Value ≠ F

set_pixel (x,y,F)

4B_Fill (x+1,y,F,B)

4B_Fill (x-1,y,F,B)

4B_Fill (x,y+1,F,B)

4B_Fill (x,y-1,F,B)

Note: Recursion is not necessarily a good computational strategy, unless compiler is very smart.

[use a stack structure]
Two types of fills

- **Boundary Fill**
 - It can fill the interior region with different colors, except the boundary color.
 - It requires a given boundary

- **Flood Fill**
 - Sometimes we want to fill a region that is *not* defined by a *single* boundary color
 - It fills region with the same interior color
Flood Fill of 4-Connected Region

Input:
1. Area pixels marked by value “A”
2. Seed (x,y)
3. Fill value “F”

Output: Raster with “A” replaced by “F” whenever 4-connected to (x,y)
Algorithm: 4F_Fill (x, y, A, F)

Function 4F_Fill (x, y, A, F)

Pixvalue = get_pixel (x, y)

If Pixvalue = A

set_pixel (x, y, F)

4F_Fill (x+1, y, A, F)

4F_Fill (x-1, y, A, F)

4F_Fill (x, y+1, A, F)

4F_Fill (x, y-1, A, F)

Note: Both Boundary fill and Flood fill could iterative procedure rather than recursion.
8-Connected Versions

8-Boundary-Fill

Same procedure as 4-connected but add 4 more cases:

$(x+1,y+1), (x-1,y+1), (x-1,y-1), (x+1,y-1)$

to the list of calls to 8B_Fill

No diagonal Boundary gaps allowed

OK

NO!
Bleeding out!
8-Flood Fill

Same procedure but add 4 more cases:

\[(x \pm 1, y \pm 1)\]

8 total calls to 8F_Fill

Diagonally adjacent pixel groups will be joined:
Fill Summary

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Boundary Fill</th>
<th>Flood Fill</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seed x,y boundary color</td>
<td>Seed x,y fill color get color at seed pixel</td>
<td></td>
</tr>
<tr>
<td>Seed x,y fill color</td>
<td>Replace seed color, ignores boundary color</td>
<td></td>
</tr>
<tr>
<td>Ignore existing non-boundary colors</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Boundary Fill Properties

- **4-connected**
 - Bresenham stairstep boundary OK
 - Fills “stairs” only

- **8-connected**
 - Must have no diagonal gaps in boundary
 - Fills diagonally adjacent

Flood Fill Property

- Replace seed color, ignores boundary color
Summary

- Scan-conversion polygons
 - Triangles
 - Polygons
 - Inside/outside test
- Fill
 - Boundary Fill
 - Flood Fill

- Take home exercises
 - Hearn pp 140-141, ex3-2, 3-9, 3-19