Mathematical Morphology

Idea of MM

• **Mathematical Morphology**
 - Combines two ideas

• **Morphology part**
 - The study of shape

• **Mathematical part**
 - Refers to the use of “Set Theory”
Basic Definition

- Consider a binary image
 - This can be thought of as a set of tuples
 - tuples in 2-D integer space \mathbb{Z}^2

- each tuple is a 2-D vector whose coordinates are the (x,y) values of the black pixels
 - Black pixels are used by convention
 - Considered the "foreground"
 - You can modify this to be the white pixels

Example

$A = \{(1,0), (1,1), (2,1), (2,2), (3,2), (4,2), (3,3)\}$

In practice, we use the image itself to represent this set.
Basic Definitions

• Let \(A \) and \(B \) be sets in \(\mathbb{Z}^2 \)
 • with components \(a=(a_1, a_2) \) and \(b=(b_1,b_2) \), respectively

 - The translation of \(A \) by \(x = (x_1,x_2) \), denoted by \((A)_x \) is defined by:

 \[
 (A)_x = \{ c \mid c = a + x, \text{ for } a \in A \}
 \]

• The reflection of \(B \), denoted by \(\hat{B} \) is defined as:

 \[
 \hat{B} = \{ x \mid x = -b, \text{ for } b \in B \}
 \]

• The complement of set \(A \) is:

 \[
 A^c = \{ x \mid x \notin A \}
 \]
Basic Definitions

- The difference of two sets A and B, denoted by $A - B$, is defined by:

$$A - B = \{ x \mid x \in A, x \notin B \} = A \cap B^c$$

Example

Translation

Reflection

Difference
Dilation Operator

• With A and B as sets in \(\mathbb{Z}^2 \) and \(\emptyset \) denoting the empty set, the dilation of A by B, denoted by \(A \oplus B \) is defined as:

\[
A \oplus B = \{ x \mid (\hat{B})_x \cap A \neq \emptyset \}
\]

or

\[
A \oplus B = \{ x \mid (\hat{B})_x \cap A \subseteq A \}
\]

Dilation

• Process consists of obtaining the reflection of B, about its origin

• Then shifting this reflection, \(\hat{B} \), by \(x \)

• The dilation of A by B is the set of all \(x \) displacements such that \(\hat{B} \) and A overlap by at least one element

• B is often called the “structuring element”
Example

For sets A and B in \mathbb{Z}^2, the erosion of A by B, denoted by $A \ominus B$, is defined by:

$$A \ominus B = \{x \mid (B)_x \subseteq A\}$$

$A \ominus B$ is the set of all points x, such that B, translated by x, is contained in A.

Erosion
Dilation and Erosion Relationship

• Are duals of each other with respect to complementation and reflection, that is:

\[(A \Theta B)^c = A^c \oplus \hat{B}\]
Duality Proof

• Proof

\[
(A \Theta B)^c = \{x \mid (B)_x \subseteq A\}^c
\]

If set \((B)_x\) is contained in set \(A\), then \((B)_x \cap A^c = \phi\), in which case the preceding equation becomes

\[
(A \Theta B)^c = \{x \mid (B)_x \cap A^c = \phi\}^c
\]

Duality Proof

But the complement of the set of \(x\)'s that satisfy \((B)_x \cap A^c = \phi\), is the set of \(x\)'s such that \((B)_x \cap A^c \neq \phi\)

• thus

\[
(A \Theta B)^c = \{x \mid (B)_x \cap A^c \neq \phi\}\]

\[
= A^c \oplus \hat{B}
\]
Dilation and Erosion

• Dilation
 - expands an image

• Erosion
 - shrinks an image

• From these two operators, we can construct several new operators

Opening

• The opening of set A, by structuring element B is:

$$A \circ B = (A \ominus B) \oplus B$$

• in other words, opening of A by B is simply the erosion of A by B, followed by a dilation by B
Example

Closing

• The closing of set A, by structuring element B is:

\[A \bullet B = (A \oplus B) \ominus B \]

• in other words, closing of A by B is simply the dilation of A by B, followed by an erosion by B
Example

Geometric Interpretation

- Opening
 - can be considered a geometric fitting problem
 - it is the union of all translates of B that fit into A

$$A \circ B = \bigcup \{ (B)_x \mid (B)_x \subseteq A \}$$
Example

Geometric Interpretation

- Alternative Interpretation
- Opening
 - If you are painting A, using a brush shaped like B, then the opening is all the points that you can paint.
Geometric Interpretation

• Closing
 - If you are painting the outside of A (ie, you are paint A^c), it is all the points you cannot paint.
Interesting Property

• Like dilation and erosion, opening and closing are duals with respects to set complementation and reflection

\[(A \bullet B)^c = A^c \circ \hat{B}\]

Properties of Opening and Closing

• OPENING
 (i) \(A \circ B\) is a subset (subimage) of \(A\)
 (ii) If \(C\) is a subset of \(D\), then \(C \circ B\) is a subset of \(D \circ B\)
 (iii) \((A \circ B) \circ B = (A \circ B)\)

• CLOSING
 (i) \(A\) is a subset of \(A \bullet B\)
 (ii) If \(C\) is a subset of \(D\), then \(C \bullet B\) is a subset of \(D \bullet B\)
 (iii) \((A \bullet B) \bullet B = (A \bullet B)\)
Filters: Closing of the Opening

- Basic tool for shape detection
- Construct two elements
 - X and $(W-X)$ where W is window slightly larger than X
 - Our goal is to find X in the image
- Solution
 \[A \oplus B = (A \ominus X) \cap (A^c \ominus [W-X]) \]

Hit-or-Miss Transform
Hit-or-Miss Transform

- Original
 \[A \otimes B = (A \ominus X) \cap (A^c \ominus [W-X]) \]

- New notation
- Let \(B_1 = X \) and \(B_2 = (W-X) \)
 \[A \otimes B = (A \ominus B_1) - (A \oplus \hat{B}_2) \]

Note, \(B_1 \) and \(B_2 \) have to be disjoint!
Hit-or-Miss Transform

• Alternative Usage
 - B_1 and B_2 are two (distinct) structuring elements

\[
A \ominus B = (A \ominus B_1) \cap (A^c \ominus B_2)
\]

• is therefore-
 - all the points that B_1 hits in A
 - AND
 - all the points that B_2 hits in A^c \textit{(misses in A)}

Hit-or-Miss Transform

• For a normal structuring element used by dilation or erosion, zeros are ignored

- For example:

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

• For the hit-or-miss structuring element
 - 0’s are typically not ignored, instead we use a new notation (next slide)
Hit-or-Miss Transform

- **Example**

 \[
 \begin{array}{ccc}
 1 & x & x \\
 1 & 0 & x \\
 1 & x & x \\
 \end{array}
 \]

 - This means, you have to find regions in \(A \), where both the 1s and 0s match.

 - An "x" is used to denote the areas to be ignored

 - So, for the above example, you can think of \(B = \) two normal structuring elements, \(B_1 \) and \(B_2 \), where

\[
\begin{array}{cccc}
B_1 &=& \begin{array}{ccc}
1 & 0 & 0 \\
1 & 0 & 0 \\
1 & 0 & 0 \\
\end{array} & \quad B_2 &=& \begin{array}{ccc}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0 \\
\end{array}
\end{array}
\]

Hit or Miss Example

- **Input**

\[
\begin{array}{ccc}
1 & x & x \\
1 & 0 & x \\
1 & x & x \\
\end{array}
\]

- **Structuring Elements**

\[
\begin{array}{cccc}
B_1 &=& \begin{array}{ccc}
1 & 0 & 0 \\
1 & 0 & 0 \\
1 & 0 & 0 \\
\end{array} & \quad B_2 &=& \begin{array}{ccc}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0 \\
\end{array}
\end{array}
\]

- **Output**

\[
\begin{array}{ccc}
* & * & * \\
* & * & * \\
* & * & * \\
\end{array}
\]
Hit-or-Miss Transform

- Using 'x', '0', and '1' is a common way of denoting hit-or-miss structuring elements
- It is a compact way of expressing two separate elements B1 and B2 as one element B

Basic Morphological Algorithms

- Boundary extraction

\[\beta(A) = A - (A \ominus B) \]
Region Filling

• Let A denote a set with a N_8 connected boundary
• Let X_0 be an initial point in that boundary
• Using a N_4 structuring element
• Region filling can be defined as:

$$X_k = (X_{k-1} \oplus B) \cap A^c \quad k = 1, 2, 3, \ldots$$

- Algorithm terminates when $X_k = X_{k-1}$

Region Filling Example
Region Filling

- The repeated dilation of region filling would fill the entire image
- However, the intersection with A^c limits the results to inside the region of interest
- This “delimiting process” is sometimes called: *conditional dilation*

Connected Component Extraction

- Similar to region growing
- Let Y be a connected component
- Let $X_0 = p$, a point on Y

$$X_k = (X_{k-1} \oplus B) \cap A \quad k = 1, 2, 3,...$$

- Algorithm terminates when $X_k = X_{k-1}$

Side Note: Recall that MM routines often take a variable, N, denoting the number of times to apply the operator. If $N=\infty$, this generally means stop when $X_k = X_{k-1}$ (that is, terminate when the image stops changing)
Example

Convex Hull

- Let $C(A)$ be the convex hull of A
- Let B^i, $i=1,2,3,4$, represent four structuring elements
- Let

$$X^i_k = (X \boxtimes B^i), \text{ for } i = 1,2,3,4 \text{ and } k = 1,2,\ldots.$$

- Now, let $D^i = X^i_{\text{conv}}$ where “conv” means

$$X^i_k = X^{i-1}_k$$
Convex Hull

• Now, let $D^i = X^i_{\text{conv}}$ where "conv" means X_i has converged

\[X^i_k = X^i_{k-1} \]

• Then, the convex hull of A is

\[C(A) = \bigcup_{i=1}^{4} D^i \]
Thinning

• Thinning of A by structuring element B is defined as:

\[A \otimes B = A - (A \odot B) = A \cap (A \odot B)^c \]

• Let \(B = \{B\} = \{B_1, B_2, B_3, \ldots, B^n\} \)

Thinning

• B is a set of structuring elements

\[A \otimes \{B\} = (((A \otimes B^1) \otimes B^2) \ldots) B^n \]

• In other words, the process is to thin A by one pass with B1, then this the results with one pass of B2, and so on.

• Repeat the process until no further changes occur.
Example of Thinning

Example of Thinning
Thickening

- A thickened by B is:
 \[A \ominus B = A \cup (A \ominus B) \]

- Easy
 - To thickening set A,
 - Thin set C, where \(C = A^c \)
 - \(A \ominus B = C^c \)

Thickening Example
Skeletons

• Skeleton extraction, $S(A)$, of A, using structure element B

$$S(A) = \bigcup_{k=0}^{K} S_k(A)$$

• where

$$S_k(A) = \bigcup_{k=0}^{K} \{(A \ominus kB) - [(A \ominus kB) \circ B]\}$$

Skeletons cont'

• B is a structuring element and $(A \ominus kB)$, indicates k successive erosions of A; such that

$$(A \ominus kB) = ((... (A \ominus B) \ominus B) ... \ominus B)$$

• k times, and K is the last iterative step before A erodes to an empty set, ie:

$$K = \max\{ k \mid (A \ominus kB) \neq \phi \}$$
Skeleton

<table>
<thead>
<tr>
<th>A ⊕ R</th>
<th>(A ⊕ R) + R</th>
<th>S(A)</th>
<th>μ S(A)</th>
<th>μ A ⊕ R</th>
<th>μ μ A ⊕ R</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 5.10: An example of the implementation of Eqs. (8.4-24)–(8.4-26). The original set is shown at the top left, and its morphological skeleton is shown at the bottom of the fourth column. The reconstructed set is shown at the bottom of the sixth column.

Example

- **A**
- **S(A)**

- Restricted skeletonization . . don't allow regions to be disconnected! (Another lecture)
Pruning

• Sometimes thinning and skeletonization leaves “spurs” or “parasite” structures

• We would like to remove these structures

• This method is called “pruning”

Pruning

• 4 Steps

• First \(X_1 = A \otimes \{B\} \)
 - Let \(\{B\} \) be a sequence of structuring elements
 - Apply this \(K \) times

• Second
 - Find the end points of \(X_1 \)
 \[
 X_2 = \bigcup_{k=1}^{8} (X_1 \ominus B^k)
 \]
Pruning

• Third
 - Use an N8 structuring element, H
 to grow the end-points K times
 - This is a form of conditional dilation

• Fourth
 - The union of X_1 and X_3 is the desired results

$$X_3 = (X_2 \oplus H) \cap A$$

$$X_4 = X_1 \cap X_3$$

Pruning Example

$$X_1 = A \otimes \{B\}$$
(Performed 3 times)

$$X_3 = \bigcup_{k=1}^{3} (X_1 \odot b^k)$$
Pruning Example

\[X_1 = (X_2 \oplus H) \cap A \]

(performed 3 times)

This technique is sometimes called “de-spurring” or “spur removal”

Modifications

• You can make modifications to \(MM \) operators

• One typical example is the “majority” dilation

 - Set a pixel to 1 if 5 or more of its \(N_8 \) neighbors are 1
Extension to Grayscale

• MM can be extended to grayscale image
 - f is a 2D discrete function (image)
 - b is a 2D discrete function (smaller image)

• Dilation

$$(f \oplus b)(s,t) = \max \{ f(s-x,t-y) + b(x,y) \mid (s-x),(t-y) \in D_f ; (x,y) \in D_b \}$$

• Erosion

$$(f \ominus b)(s,t) = \min \{ f(s+x,t+y) - b(x,y) \mid (s+x),(t+y) \in D_f ; (x,y) \in D_b \}$$

Extension to Grayscale

• Grayscale MM operators are very similar to spatial domain convolution

• But instead of a summation of the “mask” coefficients w/ the image
 - you perform a \min or \max over the domain
Grey-Level MM Example

B=

Dilation

Erosion

Grey Level MM

- Dilation
 - Tends to brighten the image, remove dark regions

- Erosion
 - Tends to darken the image, remove bright regions

- You can derive open, close
- Other operators . . .
Summary

• **Mathematical Morphology**
 - image processing approach based on set theory and shape (structuring elements)
 - provides a powerful framework for many operations
 - some operations can be easily expressed using MM
 • such as boundary extraction
• Often used to post-process “thresholded” images
 - Threshold
 - Perform some MM operation (clean up noise, fill in holes)
 - Result provides a nice segmented region

Active Research Areas

• **Morphology Digest**

• **ISMM**
 - International Symposium on Mathematical Morphology

• 3D image analysis

• Scale Spaces
Active Research Areas

• Revisiting old problems
 - Using MM
 - Old examples
 • Segmentation
 • Edge Detection (Using gray-level MM)

• You'll find MM mentioned in conjunction with other techniques