Review for the Final
CS 635 Review
(Topics Covered)

• Image Compression
 - Lossless
 • Coding Compression
 - Huffman
 • Interpixel
 - RLE
 - Lossy
 • Quantization
 • Discrete Cosine Transform
 • JPEG
CS 635 Review
(Topics Covered)

- Segmentation
 - Edge Detection
 - 1^{st} Order Derivatives (Gradient)
 - Sobel Operators
 - Gradient Magnitude and Angle
 - Criteria for edge detection and linking
 - Canny Edge
 - Key: one-pixel edge
 - Introduces the non-maximum suppression
 - 2-level thresholding
Edge Detection
Edge Linking

\[|\Psi(x, y)| \]

Edges should have similar edge normals
CS635 Review
(Topics Covered)

• Region Segmentation
 - Region Growing
 • Similarity Criteria
 - Region Splitting and Merging
 • Quad-Tree data structure
 - Watershed Algorithm
 • Find regions and merge
 - Segmentation from Motion
 • Temporal Differencing
 • Accumulation buffer
Region Segmentation

Original

Edges

Region-based
CS 635 Review
(Topics Covered)

• **Image Thresholding**
 - Simple form of segmentation
 - **Global Thresholding**
 • Automatic Thresholding
 - We need an automatic technique
 - To be able to reproduce experiments
 - avoid *magic numbers*
 • Iterative Method
 • Otsu Method
 - **Local Techniques**
 • Adaptive Thresholding based on “local” properties
Thresholding

Mean 143
Iterative 131
Otsu 130
CS 635 Review
(Topics Covered)

• **Mathematical Morphology**
 - Operations on bi-tonal images
 • “set” operation using a shape (structuring element)
 - Erosion, dilation, opening, closing
 - Hit-or-miss transform

• **Good for cleaning up noisy images**

• **Techniques using MM**
 - Boundary Extraction
 - Thinning
 - Thickening
 - Prunning
Morphology

Open
(erosion+dilation)

Close
(dilation+erosion)
Morphology

Combining the operations
Morphology

- Boundary extraction

$$\beta(A) = A - (A \ominus B)$$
Gray-Level Morphology

Our Pal Dilation Erosion
CS 635 Review
(Topics Covered)

- **Representation and Description**
 - Some Desirable Features
 - Representation should be
 - Translation, Rotation, Scale Invariant
 - Chain Codes
 - Differential Chain Codes
 - Polygonal Approximation
 - Segment Splitting
 - Signatures
 - Boundary Segments
 - Convex Deficiency
 - Medial Axis Transformation (MAT)
 - Shape Number
 - Fourier Descriptors
 - Topological operators
CS 635 Review
(Topics Covered)

• Template Matching
 - Correlation, Normalized Correlation
 - Sum Absolute Difference
 - Sum Squared Difference
 - Need some non-max-suppression

• Object Recognition
 - Face Database
 - Eigen-faces
 • Compact Representation
 • Fast search speeds
Template Matching

Template

Correlation Response

SAD Response
Object Recognition

Database of faces [objects]

Given an "new" image,
Can you tell who this is?

Huge Memory and Search Problem

Use PCA
(Principal Component Analysis)

Eigen-Faces
CS 635 Review
(Topics Covered)

• Hough Transform
 - Interesting approach for finding shapes
 - Votes for possible parametric contributions
 - Robust to noise
 - Sensitive to quantization
Hough in Practice

(a) Accumulator in parameter space (circle with r=30)

(b) 4 Peaks
CS 635 Review
(Topics Covered)

• Video Processing and Compression
 - De-interlacing (remove the interlacing effect)
 - Optical Flow (Motion Estimation)
 - Object Tracking

• Compression
 - MPEG
 • JPEG + Motion Estimation
 • I, P, and B Frame Encoding
 • Predictive frames use motion vectors, encodes difference (as DCT blocks)
Optical Flow

De-Zoom
Zoom
Translate (or rotation)
Video Compression

- Encode motion vector \((u,v)\) for each macroblock
- Encode residual error as 4 8x8 DCT blocks

FRAME TYPES
- **I Intra-frame**
- **P Predictive Frame**
- **B Bi-directional Predictive Frame**

Groups of Pictures (GOP)
- Logically organized
- IPB sequence
CS 635 Review
(Topics Covered)

• **Image Based Rendering (IBR)**
 - New reformulation of graphics as it relates to images
 • Use images to represent scene
 - No explicit geometric model
 • Warping Equation
 - Unifies 3D and 2D warping
 - New/old idea in graphics to use images to give the impression of detail
Following Examples

• The following are examples
• Consider how you would solve them
 - There may be several solutions
 • Often involved specific processing for the task
 • Often involved lots of magic numbers
 - Goal is to minimize magic number usage
 - There may be no good solution
 • Welcome to the world of IP 😊
There are 3 objects

Screws
Nuts
Washer

Can you identify (and locate) them?

Industrial Image Task
Image Enhancement

- Home User Market
 - Simple, easy to use software for your parents
 - Embedded Processing for Consumer Cameras
- Forensics Imaging
(Going, R.)
He calls us back.
(Stops)
My pride fell with my fortunes;
I’ll ask him what he would.
(Returning)
Remove the Marks

Assume you know where the marks are.

What if you didn’t know where the marks were?

Is the problem ill-posed?
Count the “Objects”
(Classic Blob Detection Problem)
Correct Pixelization
Detect the Features
(Track over time)
Detect the Object
(Detect Features inside the Object)

Microscopy Imaging
(mi-kros'-ke-pe)
Normalize Background Intensity
Fruit Inspection

- Detect bad fruit
- Determine the detect (identify the disease)
Extract the Object?
Find the fish?
(Tracking in Video)