1. A continuous-time signal $x(t)$ is sampled with sampling period $T=0.5$ second.

 a. What is the period (in radian/second) of its Fourier Transform?

 The period is just the sampling frequency $\omega_s = \frac{2\pi}{T} = 4\pi = 12.57$ rad/s

 b. If the highest frequency component of $x(t)$ is 5 Hz, can we fully recover the original continuous-time signal based on the discrete-time sample $x(nT)$? Justify your answer.

 Since the sampling frequency is $1/0.5$ or 2 Hz, the highest frequency that can pass through without aliasing is $2/2 = 1$ Hz according to the Nyquist Theorem. Thus we cannot recover the original signal.

 c. Give three different types of D/A methods and describe their relative performance in terms of complexity and reconstruction fidelity.

 In decreasing order of complexity and reconstruction accuracy:

 Ideal LowPass > RC filter > Linear Interpolation > Sample-and-Hold

 d. Given the discrete-time input $x(nT)$ to a LINEAR INTERPOLATION D/A converter, sketch the output reconstructed continuous signal $y(t)$ on top of $x(nT)$.

2. Sampling and Interpolation

 a. (4 points) State the Nyquist Theorem

 Nyquist Theorem states that a continuous-time band-limited signal can be perfectly reconstructed from its discrete samples if the sampling frequency is twice the bandwidth.

 b. (7 points) Explain why linear interpolation is a better D/A technique than sample-and-hold.

 Linear interpolation is better than sample-and-hold as the frequency response of linear interpolation decays faster than sample-and-hold and thus better suppress the high frequency components introduced by sampling.

 c. (7 points) A continuous-time signal $x_c(t) = \cos(4000\pi t)$ is sampled with sampling period T to obtain the discrete-time signal $x_d(nT) = x_d(n) = \cos(\pi n/3)$. Determine a choice of T that is consistent with this information.
Since \(x_d(n) = x_c(nT) \), we have \(4000\pi n T = \pi n / 3 \Rightarrow T = \frac{1}{12000} \)

d. (7 points) Continued from part c., is your choice for \(T \) unique? If so, explain why. If not, specify another choice of \(T \).

\(T \) is not unique because \(\cos(4000\pi n T) = \cos(\frac{\pi n}{3} + 2m\pi) \) for any integer \(m \). In particular we can choose \(m = n \), and have \(4000\pi n T = \pi n / 3 + 2n\pi \Rightarrow T = \frac{7}{12000} \)

3. In the following system, two continuous-time functions \(x_1(t) \) and \(x_2(t) \) are MULTIPLIED and the product \(w(t) \) is sampled with sampling period \(T \).

\[
\begin{align*}
&x_1(t) \quad \downarrow \quad \diamond \quad \downarrow \quad w(t) \\
x_2(t) &\quad \downarrow \quad \diamond \quad \downarrow \quad w_s(t)
\end{align*}
\]

If the spectrums of \(x_1(t) \) and \(x_2(t) \) are given as follows, determine the maximum sampling period \(T \) such that \(w(t) \) is recoverable from \(w_s(t) \) through the use of an ideal lowpass filter.

\[
\begin{align*}
&X_1(f) \quad \text{[-10, 10 Hz]} \\
&X_2(f) \quad \text{[-5, 5 Hz]}
\end{align*}
\]

Since multiplication in time domain is equivalent to convolution in frequency domain, the signal \(w(t) = x_1(t)x_2(t) \) is bandlimited within \([-10-5 \text{ Hz}, 10+5 \text{ hz}] \) or \([-15 \text{ Hz}, 15\text{Hz}] \). Thus the maximum sampling period \(T = 1/(15 \cdot 2) = 1/30 \) seconds.

4. Discrete-Time Fourier Transform

a) Given the DTFT of a LTI system is \(H_d(\omega) = \sum_{n=0}^{\infty} h(nT)e^{-j\omega Tn} \), show that if the impulse response \(h(nT) \) is real, we have \(H_{d}(-\omega) = \overline{H_{d}(\omega)} \), i.e. the negative frequency content can be deduced by taking the conjugate of the positive frequency content.

We can go straight from the definition:

\[
\begin{align*}
H(-\omega) &= \sum_{n=0}^{\infty} h(nT)e^{j\omega Tn} \\
&= \overline{\sum_{n=0}^{\infty} h(nT)e^{-j\omega Tn}} = \overline{H(\omega)}
\end{align*}
\]
Sample Midterm

b) If the input to $H(\omega)$ is $x(nT) = \cos(\omega_0 n T) = \frac{1}{2}(e^{j\omega_0 n T} + e^{-j\omega_0 n T})$, use part a) to show that the output is given by

$$y(nT) = |H(e^{j\omega_0 T})| \cos(\omega_0 n T + \angle H(e^{j\omega_0 T}))$$

As $x(nT) = \cos(\omega_0 n T) = \frac{1}{2}(e^{j\omega_0 n T} + e^{-j\omega_0 n T})$ and we know that the complex exponential is the “eigen-signal” of any LTI system. Thus, the output

$$y(nT) = \frac{1}{2} \left(|H(\omega_0)| e^{j\omega_0 n T} + H(\omega_0)e^{-j\omega_0 n T} \right)$$

As $y(nT) = \cos(\omega_0 n T) + \frac{1}{2}(\exp(j(\omega_0 n T + \angle H(\omega_0)) + \exp(j(-\omega_0 n T - \angle H(\omega_0))))$

$$= \frac{1}{2} \left(|H(\omega_0)| \cos(\omega_0 n T + \angle H(\omega_0)) \right)$$

5. Laplace Transform

a. No need to compute the actual coefficients, write down the INVERSE LAPLACE TRANSFORM of the followings:

i) $X(s) = \frac{7s^3 + 20s^2 + 33s + 82}{(s^2 + 4)(s + 2)(s + 3)}$

$$X(s) = \frac{A}{s - j2} + \frac{\bar{A}}{s + j2} + \frac{B}{s + 2} + \frac{C}{s + 3}$$

$$x(t) = Ae^{j2t} + \bar{A}e^{-j2t} + Be^{-2t} + Ce^{-3t}$$

ii) $X(s) = \frac{s^2(s + 9)}{(s + 3)^3(s + 1)}$

$$X(s) = \frac{A}{(s + 3)^3} + \frac{B}{(s + 3)^2} + \frac{C}{s + 3} + \frac{D}{s + 1}$$

$$x(t) = \frac{A}{2}t^2 e^{-3t} + Bte^{-3t} + Ce^{-3t} + De^{-t}$$

b. A dynamic system is governed by the following differential equation with initial conditions $\frac{dy}{dt}\bigg|_{t=0} = 1, y(0) = 0$

$$\frac{d^2 y}{dt^2} + 2 \frac{dy}{dt} y(t) + y(t) = x(t)$$

Given the input $X(s) = 1$. Write down the Laplace transform of the zero-state response and the zero-input response.

Writing the differential equation in complex domain, we have:
Sample Midterm

\[s^2 Y(s) - sy(0) - y'(0) + 2sY(s) - 2y(0) + Y(s) = X(s) \]
\[(s^2 + 2s + 1)Y(s) = sy(0) + y'(0) + 2y(0) + X(s) \]

\[Y(s) = \frac{sy(0) + y'(0) + 2y(0)}{s^2 + 2s + 1} + \frac{X(s)}{s^2 + 2s + 1} \]

The first term depends only on the initial condition so it is the zero-input response. Putting in the numerical value we have:

\[Y_{ZIR}(s) = \frac{1}{s^2 + 2s + 1} \]

The second term depends only on the input so it is the zero-state response. Putting in the numerical value we have:

\[Y_{ZSR}(s) = \frac{1}{s^2 + 2s + 1} \]

6. Discrete Fourier Transform

Let \(x(n) \) and \(y(n) \) be two three-point sequence:

\[
\begin{align*}
 x(n) &= \begin{cases}
 1 & \text{for } n = 0 \\
 2 & \text{for } n = 1 \\
 1 & \text{for } n = 2
 \end{cases} \\
 y(n) &= \begin{cases}
 -1 & \text{for } n = 0 \\
 2 & \text{for } n = 1 \\
 1 & \text{for } n = 2
 \end{cases}
\end{align*}
\]

Compute the 5-point DFT \(X(k) \) for \(x(n) \). You do not need to simplify your answers.

\[X(0) = 1 + 2 + 1 = 4 \]
\[X(1) = 1 + 2 \cdot \exp\left(-j \frac{2\pi}{5}\right) + \exp\left(-j \frac{4\pi}{5}\right) \]
\[X(2) = 1 + 2 \cdot \exp\left(-j \frac{4\pi}{5}\right) + \exp\left(-j \frac{8\pi}{5}\right) \]
\[X(3) = 1 + 2 \cdot \exp\left(-j \frac{6\pi}{5}\right) + \exp\left(-j \frac{12\pi}{5}\right) \]
\[X(4) = 1 + 2 \cdot \exp\left(-j \frac{8\pi}{5}\right) + \exp\left(-j \frac{16\pi}{5}\right) \]

7. Assume \(x(t) = a_1(t)x_1(t) + a_2(t)x_2(t) \), \(x_1(s) = L[x_1(t)] \) and \(x_2(s) = L[x_2(t)] \).

a. Is \(X(s) = L[x(t)] \) equal to \(a_1(t)X_1(s) + a_2(t)X_2(s) \) and why?

No. The Laplace transform is a function of \(s \) not \(t \), and thus cannot contain terms like \(a_1(t) \) and \(a_2(t) \). – 2 points

b. If \(A_1(s) = L[a_1(t)] \) and \(A_2(s) = L[a_2(t)] \), is \(L[x(t)] = A_1(s)X_1(s) + A_2(s)X_2(s) \) and why?

Sample Midterm

No. The linearity property can only be applied to constant coefficients, not time-dependent ones. – 2 points

c. If \(x(t) = e^{-2t}u(t-2) \), which of the following is the Laplace transform of \(x(t) \)?

(a) \(\frac{1}{s-2} e^{-s} \), (b) \(\frac{1}{s+1} e^{-2s} \), (c) \(\frac{1}{s-1} e^{-s} \), (d) none of the above.

We can break it down into two steps:

\(e^{t-2} u(t-2) \) \(\Leftrightarrow \) time delay \(\Leftrightarrow \) \(e^t u(t) \) \(\Leftrightarrow \) multiplication of exponential \(\Leftrightarrow \) \(u(t) \)

Since \(L[u(t)] = \frac{1}{s} \), the complex shifting theorem tells us that \(L[e^t u(t)] = \frac{1}{s-1} \).

Finally, time delay corresponds to multiplication of exponential in s-domain, i.e. \(L[e^{t-2}u(t-2)] = \frac{e^{-2s}}{s-1} \) or (c).

8. Laplace Transform

a. \(x(t) \)'s Laplace transform is \(X(s) = \frac{s+4}{s^2+3s+2} \). Draw its ROC.

After simplification, \(X(s) = \frac{1}{(s+1)(s+2)} \). The poles of \(X(s) \) are -1 and -2. (2 pts)

The ROC looks like

b. Find the differential equation relating the input \(x(t) \) and the output \(y(t) \) if the transfer function of the system is given as follows:

\[H(s) = \frac{Y(s)}{X(s)} = \frac{1}{s^2 + 2s + 1} \]

\[H(s) = \frac{1}{s^2 + 2s + 1} \Rightarrow s^2 Y(s) + 2sY(s) + Y(s) = X(s) \]

By the definition of transfer function, all initial conditions are assumed to be zero.

Taking inverse Laplace transform, we get

\[\frac{d^2 y}{dt^2} + 2 \frac{dy}{dt} + y(t) = x(t) \]